
## Thavamani Palanisami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4166092/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environment International, 2018, 115, 400-409.                                  | 4.8 | 843       |
| 2  | Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils:<br>Technological constraints, emerging trends and future directions. Chemosphere, 2017, 168, 944-968.       | 4.2 | 544       |
| 3  | COVID pollution: impact of COVID-19 pandemic on global plastic waste footprint. Heliyon, 2021, 7, e06343.                                                                                          | 1.4 | 360       |
| 4  | Estimation of the mass of microplastics ingested – A pivotal first step towards human health risk<br>assessment. Journal of Hazardous Materials, 2021, 404, 124004.                                | 6.5 | 333       |
| 5  | Interaction of chemical contaminants with microplastics: Principles and perspectives. Science of the Total Environment, 2020, 706, 135978.                                                         | 3.9 | 279       |
| 6  | Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environment International, 2016, 87, 1-12.                                | 4.8 | 277       |
| 7  | Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review. Science of the Total Environment, 2020, 698, 134057.                         | 3.9 | 249       |
| 8  | Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons.<br>Environment International, 2019, 123, 543-557.                                                 | 4.8 | 245       |
| 9  | Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant. Water Research, 2020, 173, 115549.                                            | 5.3 | 156       |
| 10 | Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. Journal of Environmental Management, 2012, 99, 10-17.           | 3.8 | 145       |
| 11 | Polycyclic Aromatic Hydrocarbons (PAHs) in inland aquatic ecosystems: Perils and remedies through biosensors and bioremediation. Environmental Pollution, 2018, 241, 212-233.                      | 3.7 | 124       |
| 12 | Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation. Journal of Hazardous Materials, 2016, 317, 169-179.     | 6.5 | 118       |
| 13 | Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. Journal of Applied Phycology, 2015, 27, 1861-1869.                                                        | 1.5 | 111       |
| 14 | Transport and fate of microplastics in wastewater treatment plants: implications to environmental health. Reviews in Environmental Science and Biotechnology, 2018, 17, 637-653.                   | 3.9 | 110       |
| 15 | Biofilms Enhance the Adsorption of Toxic Contaminants on Plastic Microfibers under<br>Environmentally Relevant Conditions. Environmental Science & Technology, 2021, 55, 8877-8887.                | 4.6 | 108       |
| 16 | Remediation trials for hydrocarbon-contaminated soils in arid environments: Evaluation of bioslurry and biopiling techniques. International Biodeterioration and Biodegradation, 2015, 101, 56-65. | 1.9 | 103       |
| 17 | Managing long-term polycyclic aromatic hydrocarbon contaminated soils: a risk-based approach.<br>Environmental Science and Pollution Research, 2015, 22, 8927-8941.                                | 2.7 | 96        |
| 18 | Abandoned metalliferous mines: ecological impacts and potential approaches for reclamation.<br>Reviews in Environmental Science and Biotechnology, 2016, 15, 327-354.                              | 3.9 | 94        |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Challenges and complexities in remediation of uranium contaminated soils: A review. Journal of Environmental Radioactivity, 2018, 192, 592-603.                                                                                                              | 0.9 | 93        |
| 20 | Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in<br>liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium. Biodegradation, 2012,<br>23, 823-835.                                    | 1.5 | 90        |
| 21 | A Comprehensive Analysis of Plastics and Microplastic Legislation Worldwide. Water, Air, and Soil<br>Pollution, 2018, 229, 1.                                                                                                                                | 1.1 | 90        |
| 22 | Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by novel bacterial consortia tolerant to<br>diverse physical settings – Assessments in liquid- and slurry-phase systems. International<br>Biodeterioration and Biodegradation, 2016, 108, 149-157. | 1.9 | 88        |
| 23 | Microbes from mined sites: Harnessing their potential for reclamation of derelict mine sites.<br>Environmental Pollution, 2017, 230, 495-505.                                                                                                                | 3.7 | 87        |
| 24 | Recent advances in the synthesis of inorganic nano/microstructures using microbial biotemplates and their applications. RSC Advances, 2014, 4, 52156-52169.                                                                                                  | 1.7 | 79        |
| 25 | Finger printing of mixed contaminants from former manufactured gas plant (MGP) site soils:<br>Implications to bioremediation. Environment International, 2011, 37, 184-189.                                                                                  | 4.8 | 78        |
| 26 | Multivariate analysis of mixed contaminants (PAHs and heavy metals) at manufactured gas plant site soils. Environmental Monitoring and Assessment, 2012, 184, 3875-3885.                                                                                     | 1.3 | 74        |
| 27 | Potential of Melaleuca diosmifolia leaf as a low-cost adsorbent for hexavalent chromium removal from contaminated water bodies. Chemical Engineering Research and Design, 2016, 100, 173-182.                                                                | 2.7 | 73        |
| 28 | Exploring the Composition and Functions of Plastic Microbiome Using Whole-Genome Sequencing.<br>Environmental Science & Technology, 2021, 55, 4899-4913.                                                                                                     | 4.6 | 71        |
| 29 | Evaluation of metal uptake factors of native trees colonizing an abandoned copper mine – a quest for phytostabilization. Journal of Sustainable Mining, 2015, 14, 115-123.                                                                                   | 0.1 | 70        |
| 30 | Effects of ageing and soil properties on the oral bioavailability of benzo[a]pyrene using a swine model. Environment International, 2014, 70, 192-202.                                                                                                       | 4.8 | 67        |
| 31 | In-Situ Remediation Approaches for the Management of Contaminated Sites: A Comprehensive Overview. Reviews of Environmental Contamination and Toxicology, 2016, 236, 1-115.                                                                                  | 0.7 | 67        |
| 32 | A Review on the Synthesis and Applications of Nanoporous Carbons for the Removal of Complex<br>Chemical Contaminants. Bulletin of the Chemical Society of Japan, 2021, 94, 1232-1257.                                                                        | 2.0 | 67        |
| 33 | Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite. Environmental<br>Science & Technology, 2013, 47, 4670-4676.                                                                                                           | 4.6 | 66        |
| 34 | Bioremediation potential of natural polyphenol rich green wastes: A review of current research and recommendations for future directions. Environmental Technology and Innovation, 2015, 4, 17-28.                                                           | 3.0 | 66        |
| 35 | Distribution, toxicity, interactive effects, and detection of ochratoxin and deoxynivalenol in food: A review. Food Chemistry, 2022, 378, 131978.                                                                                                            | 4.2 | 63        |
| 36 | Understanding the Fundamental Basis for Biofilm Formation on Plastic Surfaces: Role of<br>Conditioning Films. Frontiers in Microbiology, 2021, 12, 687118.                                                                                                   | 1.5 | 62        |

Thavamani Palanisami

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis. Biotechnology Progress, 2016, 32, 638-648.                                                                                 | 1.3 | 61        |
| 38 | Cultivation of Chlorella on brewery wastewater and nano-particle biosynthesis by its biomass.<br>Bioresource Technology, 2016, 211, 698-703.                                                                                                             | 4.8 | 61        |
| 39 | Benchmarking Bioplastics: A Natural Step Towards a Sustainable Future. Journal of Polymers and the<br>Environment, 2020, 28, 3055-3075.                                                                                                                  | 2.4 | 56        |
| 40 | Ex-Situ Remediation Technologies for Environmental Pollutants: A Critical Perspective. Reviews of Environmental Contamination and Toxicology, 2016, 236, 117-192.                                                                                        | 0.7 | 54        |
| 41 | Quercus robur acorn peel as a novel coagulating adsorbent for cationic dye removal from aquatic ecosystems. Ecological Engineering, 2017, 101, 3-8.                                                                                                      | 1.6 | 54        |
| 42 | Nitrate removal efficiency of bacterial consortium (Pseudomonas sp. KW1 and Bacillus sp. YW4) in synthetic nitrate-rich water. Journal of Hazardous Materials, 2008, 157, 553-563.                                                                       | 6.5 | 52        |
| 43 | Baseline survey of micro and mesoplastics in the gastro-intestinal tract of commercial fish from<br>Southeast coast of the Bay of Bengal. Marine Pollution Bulletin, 2020, 153, 110974.                                                                  | 2.3 | 52        |
| 44 | Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic<br>P-solubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS-7 isolated from long-term<br>mixed contaminated soil. Chemosphere, 2016, 162, 31-39. | 4.2 | 47        |
| 45 | Analysis of polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives in soils of an industrial heritage city of Australia. Science of the Total Environment, 2020, 699, 134303.                                                               | 3.9 | 46        |
| 46 | Bioremediation of soil long-term contaminated with PAHs by algal–bacterial synergy of Chlorella sp.<br>MM3 and Rhodococcus wratislaviensis strain 9 in slurry phase. Science of the Total Environment,<br>2019, 659, 724-731.                            | 3.9 | 45        |
| 47 | Baseline analysis of metal(loid)s on microplastics collected from the Australian shoreline using citizen science. Marine Pollution Bulletin, 2020, 152, 110914.                                                                                          | 2.3 | 42        |
| 48 | Effect of ageing on benzo[a]pyrene extractability in contrasting soils. Journal of Hazardous<br>Materials, 2015, 296, 175-184.                                                                                                                           | 6.5 | 37        |
| 49 | Kinetics of PAH degradation by a new acid-metal-tolerant Trabulsiella isolated from the MGP site soil and identification of its potential to fix nitrogen and solubilize phosphorous. Journal of Hazardous Materials, 2016, 307, 99-107.                 | 6.5 | 36        |
| 50 | Multiwall carbon nanotubes increase the microbial community in crude oil contaminated fresh water sediments. Science of the Total Environment, 2016, 539, 370-380.                                                                                       | 3.9 | 34        |
| 51 | Toxicity and bioaccumulation of iron in soil microalgae. Journal of Applied Phycology, 2016, 28, 2767-2776.                                                                                                                                              | 1.5 | 32        |
| 52 | Bioaugmentation with Novel Microbial Formula vs. Natural Attenuation of a Long-Term Mixed<br>Contaminated Soil—Treatability Studies in Solid- and Slurry-Phase Microcosms. Water, Air, and Soil<br>Pollution, 2016, 227, 1.                              | 1.1 | 32        |
| 53 | Oak (Quercus robur) Acorn Peel as a Low-Cost Adsorbent for Hexavalent Chromium Removal from<br>Aquatic Ecosystems and Industrial Effluents. Water, Air, and Soil Pollution, 2016, 227, 1.                                                                | 1.1 | 31        |
| 54 | Speciation and source apportionment of polycyclic aromatic compounds (PACs) in sediments of the<br>largest salt water lake of Australia. Chemosphere, 2020, 246, 125779.                                                                                 | 4.2 | 31        |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Metal-tolerant PAH-degrading bacteria: development of suitable test medium and effect of cadmium<br>and its availability on PAH biodegradation. Environmental Science and Pollution Research, 2015, 22,<br>8957-8968.                                       | 2.7 | 30        |
| 56 | Isolation and characterization of polycyclic aromatic hydrocarbons (PAHs) degrading, pH tolerant,<br>N-fixing and P-solubilizing novel bacteria from manufactured gas plant (MGP) site soils.<br>Environmental Technology and Innovation, 2016, 6, 204-219. | 3.0 | 29        |
| 57 | Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects,<br>and Exposure Mitigation. International Journal of Environmental Research and Public Health, 2021, 18,<br>11055.                                       | 1.2 | 29        |
| 58 | Using soil properties to predict in vivo bioavailability of lead in soils. Chemosphere, 2015, 138, 422-428.                                                                                                                                                 | 4.2 | 27        |
| 59 | Potential of Melaleuca diosmifolia as a novel, non-conventional and low-cost coagulating adsorbent<br>for removing both cationic and anionic dyes. Journal of Industrial and Engineering Chemistry, 2016, 37,<br>198-207.                                   | 2.9 | 27        |
| 60 | Towards bioavailability-based soil criteria: past, present and future perspectives. Environmental<br>Science and Pollution Research, 2015, 22, 8779-8785.                                                                                                   | 2.7 | 26        |
| 61 | Risk based land management requires focus beyond the target contaminants—A case study involving weathered hydrocarbon contaminated soils. Environmental Technology and Innovation, 2015, 4, 98-109.                                                         | 3.0 | 25        |
| 62 | Cation doped hydroxyapatite nanoparticles enhance strontium adsorption from aqueous system: A comparative study with and without calcination. Applied Clay Science, 2016, 134, 136-144.                                                                     | 2.6 | 25        |
| 63 | Fingerprinting Plastic-Associated Inorganic and Organic Matter on Plastic Aged in the Marine Environment for a Decade. Environmental Science & amp; Technology, 2021, 55, 7407-7417.                                                                        | 4.6 | 25        |
| 64 | Understanding the pathogenesis of occupational coal and silica dust-associated lung disease.<br>European Respiratory Review, 2022, 31, 210250.                                                                                                              | 3.0 | 25        |
| 65 | Remediation of metalliferous mines, revegetation challenges and emerging prospects in semi-arid and arid conditions. Environmental Science and Pollution Research, 2016, 23, 20131-20150.                                                                   | 2.7 | 24        |
| 66 | Novel resources recovery from anaerobic digestates: Current trends and future perspectives. Critical Reviews in Environmental Science and Technology, 2022, 52, 1915-1999.                                                                                  | 6.6 | 24        |
| 67 | Assessment of antioxidant activity, minerals, phenols and flavonoid contents of common plant/tree waste extracts. Industrial Crops and Products, 2016, 83, 630-634.                                                                                         | 2.5 | 23        |
| 68 | Microplastics in the Marine Environment: Current Status, Assessment Methodologies, Impacts and<br>Solutions. Journal of Pollution Effects & Control, 2016, 04, .                                                                                            | 0.1 | 22        |
| 69 | Speciation and bioavailability of lead in complementary medicines. Science of the Total Environment, 2016, 539, 304-312.                                                                                                                                    | 3.9 | 22        |
| 70 | A critical review on the role of abiotic factors on the transformation, environmental identity and<br>toxicity of engineered nanomaterials in aquatic environment. Environmental Pollution, 2022, 296,<br>118726.                                           | 3.7 | 22        |
| 71 | Evaluation of constraints in bioremediation of weathered hydrocarbon-contaminated arid soils<br>through microcosm biopile study. International Journal of Environmental Science and Technology,<br>2015, 12, 3597-3612.                                     | 1.8 | 20        |
| 72 | Metal bioavailability to Eisenia fetida through copper mine dwelling animal and plant litter, a new<br>challenge on contaminated environment remediation. International Biodeterioration and<br>Biodegradation, 2016, 113, 208-216.                         | 1.9 | 20        |

Thavamani Palanisami

| #  | Article                                                                                                                                                                                                                                              | IF              | CITATIONS          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| 73 | Pathways of reductive degradation of crystal violet in wastewater using free-strain Burkholderia vietnamiensis C09V. Environmental Science and Pollution Research, 2014, 21, 10339-10348.                                                            | 2.7             | 19                 |
| 74 | Influence of ageing on lead bioavailability in soils: a swine study. Environmental Science and<br>Pollution Research, 2015, 22, 8979-8988.                                                                                                           | 2.7             | 19                 |
| 75 | Bioaccessibility of barium from barite contaminated soils based on gastric phase inÂvitro data and plant uptake. Chemosphere, 2016, 144, 1421-1427.                                                                                                  | 4.2             | 19                 |
| 76 | Kinetic and isotherm insights of Diclofenac removal by sludge derived hydrochar. Scientific Reports, 2022, 12, 2184.                                                                                                                                 | 1.6             | 16                 |
| 77 | Earthworm Comet Assay for Assessing the Risk of Weathered Petroleum Hydrocarbon Contaminated<br>Soils: Need to Look Further than Target Contaminants. Archives of Environmental Contamination and<br>Toxicology, 2016, 71, 561-571.                  | 2.1             | 15                 |
| 78 | Polycyclic aromatic hydrocarbons (PAHs) degradation potential, surfactant production, metal<br>resistance and enzymatic activity of two novel cellulose-degrading bacteria isolated from koala<br>faeces. Environmental Earth Sciences, 2017, 76, 1. | 1.3             | 14                 |
| 79 | Composition, source identification and ecological risk assessment of polycyclic aromatic<br>hydrocarbons in surface sediments of the Subei Grand Canal, China. Environmental Earth Sciences,<br>2015, 74, 2669-2677.                                 | 1.3             | 13                 |
| 80 | Multifarious activities of cellulose degrading bacteria from Koala (Phascolarctos cinereus) faeces.<br>Journal of Animal Science and Technology, 2015, 57, 23.                                                                                       | 0.8             | 12                 |
| 81 | Synthesis and characterisation of 3-dimensional hydroxyapatite nanostructures using a thermoplastic polyurethane nanofiber sacrificial template. RSC Advances, 2015, 5, 97773-97780.                                                                 | 1.7             | 11                 |
| 82 | Analysis of chromium status in the revegetated flora of a tannery waste site and microcosm studies using earthworm E. fetida. Environmental Science and Pollution Research, 2018, 25, 5063-5070.                                                     | 2.7             | 11                 |
| 83 | Bioavailability of polycyclic aromatic compounds (PACs) to the Sydney rock oyster (Saccostrea) Tj ETQq1 1 0.784<br>Total Environment, 2020, 736, 139574.                                                                                             | 314 rgBT<br>3.9 | /Overlock 10<br>10 |
| 84 | Evaluation of relative bioaccessibility leaching procedure for an assessment of lead bioavailability in mixed metal contaminated soils. Environmental Technology and Innovation, 2017, 7, 229-238.                                                   | 3.0             | 6                  |
| 85 | Polymer prioritization framework: A novel multi-criteria framework for source mapping and<br>characterizing the environmental risk of plastic polymers. Journal of Hazardous Materials, 2022, 429,<br>128330.                                        | 6.5             | 6                  |
| 86 | Assessment of chromium hyper-accumulative behaviour using biochemical analytical techniques of<br>greenhouse cultivated Sonchus asper on tannery waste dump site soils. Environmental Science and<br>Pollution Research, 2018, 25, 26992-26999.      | 2.7             | 5                  |
| 87 | Stress responses and specific metal exclusion on mine soils based on germination and growth studies by Australian golden wattle. Ecological Indicators, 2016, 71, 113-122.                                                                           | 2.6             | 4                  |
| 88 | Quantitative biomonitoring of polycyclic aromatic compounds (PACs) using the Sydney rock oyster (Saccostrea glomerata). Science of the Total Environment, 2020, 742, 140497.                                                                         | 3.9             | 3                  |