
Jung Sik Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4165727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proton Shuttles in CeO ₂ /CeO _{2â^ʾÎ́} Core–Shell Structure. ACS Energy Letters, 2019, 4, 2601-2607.	8.8	160
2	Charge separation and transport in La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O $3 \cdot \hat{l}$ and ion-doping ceria heterostructure material for new generation fuel cell. Nano Energy, 2017, 37, 195-202.	8.2	115
3	Advanced Fuel Cell Based on Perovskite La–SrTiO ₃ Semiconductor as the Electrolyte with Superoxide-Ion Conduction. ACS Applied Materials & Interfaces, 2018, 10, 33179-33186.	4.0	103
4	Semiconductor TiO ₂ thin film as an electrolyte for fuel cells. Journal of Materials Chemistry A, 2019, 7, 16728-16734.	5.2	80
5	Semiconductor Electrochemistry for Clean Energy Conversion and Storage. Electrochemical Energy Reviews, 2021, 4, 757-792.	13.1	77
6	Semiconductor-ionic Membrane of LaSrCoFe-oxide-doped Ceria Solid Oxide Fuel Cells. Electrochimica Acta, 2017, 248, 496-504.	2.6	74
7	Study on Zinc Oxide-Based Electrolytes in Low-Temperature Solid Oxide Fuel Cells. Materials, 2018, 11, 40.	1.3	69
8	Junction and energy band on novel semiconductor-based fuel cells. IScience, 2021, 24, 102191.	1.9	45
9	Design principle and assessing the correlations in Sb-doped Ba0.5Sr0.5FeO3â€'î´ perovskite oxide for enhanced oxygen reduction catalytic performance. Journal of Catalysis, 2021, 395, 168-177.	3.1	44
10	Perovskite SrFe 1-x Ti x O 3-δ (x < = 0.1) cathode for low temperature solid oxide fuel cell. Ceramics International, 2018, 44, 10266-10272.	2.3	41
11	Constrained sintering kinetics of 3YSZ films. Journal of the European Ceramic Society, 2011, 31, 2231-2239.	2.8	33
12	Parameters and their impacts on the temperature distribution and thermal gradient of solid oxide fuel cell. Applied Energy, 2019, 241, 164-173.	5.1	31
13	Standardized Procedures Important for Improving Single-Component Ceramic Fuel Cell Technology. ACS Energy Letters, 2017, 2, 2752-2755.	8.8	30
14	Promising electrochemical study of titanate based anodes in direct carbon fuel cell using walnut and almond shells biochar fuel. Journal of Power Sources, 2019, 434, 126679.	4.0	27
15	In-situ monitoring of temperature distribution in operating solid oxide fuel cell cathode using proprietary sensory techniques versus commercial thermocouples. Applied Energy, 2018, 230, 551-562.	5.1	26
16	lonic Conducting Properties and Fuel Cell Performance Developed by Band Structures. Journal of Physical Chemistry C, 2019, 123, 8569-8577.	1.5	26
17	Surfaceâ€Engineered Homostructure for Enhancing Proton Transport. Small Methods, 2022, 6, e2100901.	4.6	26
18	Stress Induced by Constrained Sintering of 3YSZ Films Measured by Substrate Creep. Journal of the American Ceramic Society, 2011, 94, 717-724.	1.9	24

Jung Sik Kim

#	Article	IF	CITATIONS
19	Cell integrated multi-junction thermocouple array for solid oxide fuel cell temperature sensing: N+1 architecture. Journal of Power Sources, 2016, 315, 70-78.	4.0	21
20	A net shape process for metallic microcomponent fabrication using Al and Cu micro/nano powders. Journal of Micromechanics and Microengineering, 2006, 16, 48-52.	1.5	19
21	Constrained sintering of 8 mol% Y2O3 stabilised zirconia films. Journal of the European Ceramic Society, 2012, 32, 4121-4128.	2.8	18
22	Progress in Electrolyte-Free Fuel Cells. Frontiers in Energy Research, 2016, 4, .	1.2	17
23	Performance and Durability of Thin Film Thermocouple Array on a Porous Electrode. Sensors, 2016, 16, 1329.	2.1	17
24	Tuning La ₂ O ₃ to high ionic conductivity by Ni-doping. Chemical Communications, 2022, 58, 4360-4363.	2.2	15
25	Pressure Free Fabrication of 3D Microcomponents Using Al Powder. Advanced Engineering Materials, 2006, 8, 38-41.	1.6	13
26	Spring Based Connection of External Wires to a Thin Film Temperature Sensor Integrated Inside a Solid Oxide Fuel Cell. Scientific Reports, 2019, 9, 2161.	1.6	13
27	Performance analysis of LiAl0.5Co0.5O2 nanosheets for intermediate-temperature fuel cells. International Journal of Hydrogen Energy, 2021, 46, 26478-26488.	3.8	12
28	Singleâ€step fabrication of an anode supported planar singleâ€chamber solid oxide fuel cell. International Journal of Applied Ceramic Technology, 2018, 15, 1375-1387.	1.1	10
29	In-situ temperature monitoring directly from cathode surface of an operating solid oxide fuel cell. Applied Energy, 2020, 280, 116013.	5.1	10
30	Fabrication and evaluation of a novel wavy Single Chamber Solid Oxide Fuel Cell via in-situ monitoring of curvature evolution. Applied Energy, 2017, 195, 1038-1046.	5.1	6
31	Netâ€Shape Alumina Microcomponents by Conversion of Al Powder. Advanced Engineering Materials, 2009, 11, 106-110.	1.6	5
32	Cell integrated thin-film multi-junction thermocouple array for in-situ temperature monitoring of solid oxide fuel cells. , 2015, , .		3
33	Fabrication of Threeâ€Dimensional Wavy Singleâ€Chamber Solid Oxide Fuel Cell by <i>In Situ</i> Observation of Curvature Evolution. Journal of the American Ceramic Society, 2016, 99, 1174-1183.	1.9	3
34	Development of a Novel Multi-Channel Thermocouple Array Sensor for In-Situ Monitoring of Ice Accretion. Sensors, 2020, 20, 2165.	2.1	3
35	Constrained Sintering of Zirconia Films. ECS Transactions, 2009, 25, 1531-1540.	0.3	1
36	Constrained Sintering Stress -Review. Springer Proceedings in Physics, 2010, , 163-173.	0.1	1

#	Article	IF	CITATIONS
37	Fabrication of Three-Dimensional Magnetic Microcomponents. Springer Proceedings in Physics, 2010, , 131-139.	0.1	Ο