
Jolanta B Zawilska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4165507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neurotoxicity of Exogenous Cannabinoids. , 2021, , 1-31.		1
2	Behavioral Effects of 4-CMC and 4-MeO-PVP in DBA/2J Mice After Acute and Intermittent Administration and Following Withdrawal from Intermittent 14-Day Treatment. Neurotoxicity Research, 2021, 39, 575-587.	2.7	5
3	Use of fentanyl, butyrfentanyl and furanylfentanyl as discussed on Polish online forums devoted to new psychoactive substances Psychiatria Polska, 2021, , 1-18.	0.5	2
4	Carfentanil – from an animal anesthetic to a deadly illicit drug. Forensic Science International, 2021, 320, 110715.	2.2	26
5	COVID-19: Epidemiology, pathogenesis, diagnosis and clinical symptoms. Farmacja Polska, 2021, 77, 166-177.	0.1	2
6	Angiotensin converting enzyme 2 (ACE2) - the major receptor for SARS-CoV-2 virus. Farmacja Polska, 2021, 77, 150-154.	0.1	2
7	Understanding the immunopathology of SARS-CoV-2 infection - the key to successful COVID-19 therapy. Farmacja Polska, 2021, 77, 155-165.	0.1	1
8	Therapy of COVID-19: vaccines and drugs. Farmacja Polska, 2021, 77, 178-192.	0.1	0
9	SARS-CoV-2 virus: origin, structure and replication cycle. Farmacja Polska, 2021, 77, 143-149.	0.1	1
10	SELF-ASSESSMENT OF KNOWLEDGE OF EMERGENCY MEDICAL SERVICES SYSTEM EMPLOYEES ON NEW PSYCHOACTIVE SUBSTANCES – CURRENT STATUS AND DEVELOPMENT PROSPECTS. Emergency Medical Service, 2021, 8, 232-239.	0.1	0
11	Four Synthetic Cathinones: 3-Chloromethcathinone, 4-Chloromethcathinone, 4-Fluoro-α-Pyrrolidinopentiophenone, and 4-Methoxy-α-Pyrrolidinopentiophenone Produce Changes in the Spontaneous Locomotor Activity and Motor Performance in Mice with Varied Profiles. Neurotoxicity Research, 2020, 38, 536-551.	2.7	11
12	NBOMes–Highly Potent and Toxic Alternatives of LSD. Frontiers in Neuroscience, 2020, 14, 78.	2.8	49
13	Comparative neuropharmacological studies on three pyrrolidine-containing synthetic cathinones. Forensic Toxicology, 2020, 38, 378-393.	2.4	1
14	Induction of immediate early genes expression in the mouse striatum following acute administration of synthetic cathinones. Pharmacological Reports, 2019, 71, 977-982.	3.3	10
15	An expanding world of new psychoactive substances—designer benzodiazepines. NeuroToxicology, 2019, 73, 8-16.	3.0	78
16	Methcathinone and 3-Fluoromethcathinone Stimulate Spontaneous Horizontal Locomotor Activity in Mice and Elevate Extracellular Dopamine and Serotonin Levels in the Mouse Striatum. Neurotoxicity Research, 2019, 35, 594-605.	2.7	16
17	Abuse of fentanyl: An emerging problem to face. Forensic Science International, 2018, 289, 207-214.	2.2	122
18	Cytotoxicity of α-Pyrrolidinophenones: an Impact of α-Aliphatic Side-chain Length and Changes in the Plasma Membrane Fluidity. Neurotoxicity Research, 2018, 34, 613-626.	2.7	17

JOLANTA B ZAWILSKA

#	Article	IF	CITATIONS
19	Effects of the new generation α-pyrrolidinophenones on spontaneous locomotor activities in mice, and on extracellular dopamine and serotonin levels in the mouse striatum. Forensic Toxicology, 2018, 36, 334-350.	2.4	18
20	α-Pyrrolidinophenones: a new wave of designer cathinones. Forensic Toxicology, 2017, 35, 201-216.	2.4	93
21	An Expanding World of Novel Psychoactive Substances: Opioids. Frontiers in Psychiatry, 2017, 8, 110.	2.6	148
22	The effects of topiramate on lipopolysaccharide (LPS)-induced proinflammatory cytokine release from primary rat microglial cell cultures. Epilepsy Research, 2016, 127, 352-357.	1.6	13
23	Cytotoxic Activity of Pyrovalerone Derivatives, an Emerging Group of Psychostimulant Designer Cathinones. Neurotoxicity Research, 2016, 30, 239-250.	2.7	43
24	JWH-133, a Selective Cannabinoid CB2 Receptor Agonist, Exerts Toxic Effects on Neuroblastoma SH-SY5Y Cells. Journal of Molecular Neuroscience, 2016, 58, 441-445.	2.3	11
25	A new face of orexins action - neuroprotection. SpringerPlus, 2015, 4, L59.	1.2	2
26	"Legal Highs―– An Emerging Epidemic of Novel Psychoactive Substances. International Review of Neurobiology, 2015, 120, 273-300.	2.0	47
27	Next generation of novel psychoactive substances on the horizon – A complex problem to face. Drug and Alcohol Dependence, 2015, 157, 1-17.	3.2	148
28	Mephedrone and other cathinones. Current Opinion in Psychiatry, 2014, 27, 256-262.	6.3	24
29	PACAP38 and PACAP6-38 Exert Cytotoxic Activity Against Human Retinoblastoma Y79 Cells. Journal of Molecular Neuroscience, 2014, 54, 463-468.	2.3	23
30	Orexins Protect Neuronal Cell Cultures Against Hypoxic Stress: an Involvement of Akt Signaling. Journal of Molecular Neuroscience, 2014, 52, 48-55.	2.3	54
31	Spice/K2 drugs – more than innocent substitutes for marijuana. International Journal of Neuropsychopharmacology, 2014, 17, 509-525.	2.1	79
32	Methoxetamine $\hat{a} \in \hat{a}$ a novel recreational drug with potent hallucinogenic properties. Toxicology Letters, 2014, 230, 402-407.	0.8	50
33	Prodrugs: A challenge for the drug development. Pharmacological Reports, 2013, 65, 1-14.	3.3	177
34	<i>Salvia divinorum</i> : from Mazatec medicinal and hallucinogenic plant to emerging recreational drug. Human Psychopharmacology, 2013, 28, 403-412.	1.5	29
35	Orexins/hypocretins stimulate accumulation of inositol phosphate in primary cultures of rat cortical neurons. Pharmacological Reports, 2013, 65, 513-516.	3.3	5
36	Designer cathinones—An emerging class of novel recreational drugs. Forensic Science International, 2013, 231, 42-53.	2.2	153

JOLANTA B ZAWILSKA

#	Article	IF	CITATIONS
37	Orexins promote survival of rat cortical neurons. Neuroscience Letters, 2012, 506, 303-306.	2.1	34
38	Orexin A Suppresses the Growth of Rat C6 Glioma Cells via a Caspase-Dependent Mechanism. Journal of Molecular Neuroscience, 2012, 48, 706-712.	2.3	33
39	Activation of orexin/hypocretin type 1 receptors stimulates cAMP synthesis in primary cultures of rat astrocytes. Pharmacological Reports, 2011, 63, 717-723.	3.3	25
40	"Legal Highs―– New Players in the Old Drama. Current Drug Abuse Reviews, 2011, 4, 122-130.	3.4	54
41	Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacological Reports, 2009, 61, 383-410.	3.3	257
42	Turkey retina and pineal gland differentially respond to constant environment. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 907-913.	1.6	5
43	Regulation of serotonin N-acetyltransferase activity in the chick pineal gland by UV-A and white light: role of MK-801- and SCH 23390-sensitive retinal signals. Pharmacological Reports, 2007, 59, 408-13.	3.3	3
44	Diurnal and circadian rhythms in melatonin synthesis in the turkey pineal gland and retina. General and Comparative Endocrinology, 2006, 145, 162-168.	1.8	35
45	Daily Oscillation in Melatonin Synthesis in The Turkey Pineal Gland and Retina: Diurnal and Circadian Rhythms. Chronobiology International, 2006, 23, 341-350.	2.0	10
46	Receptors for VIP and PACAP in Guinea Pig Cerebral Cortex: Effects on Cyclic AMP Synthesis and Characterization by ¹²⁵ I-VIP Binding. Journal of Molecular Neuroscience, 2005, 25, 215-224.	2.3	6
47	Posthatching developmental changes in noradrenaline content in the chicken pineal gland. Journal of Pineal Research, 2005, 38, 123-129.	7.4	6
48	UV-A light regulation of arylalkylamineN-acetyltransferase activity in the chick pineal gland: role of cAMP and proteasomal proteolysis. Journal of Pineal Research, 2005, 39, 419-424.	7.4	7
49	Near-ultraviolet light perceived by the retina generates the signal suppressing melatonin synthesis in the chick pineal gland—an involvement of NMDA glutamate receptors. Neuroscience Letters, 2005, 379, 214-217.	2.1	9
50	Receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide in turkey cerebral cortex: characterization by [1251]-VIP binding and effects on cyclic AMP synthesis. General and Comparative Endocrinology, 2004, 137, 187-195.	1.8	8
51	Suppression of melatonin biosynthesis in the chicken pineal gland by retinally perceived light - involvement of D1-dopamine receptors. Journal of Pineal Research, 2004, 36, 80-86.	7.4	13
52	Retinal illumination phase shifts the circadian rhythm of serotonin N-acetyltransferase activity in the chicken pineal gland. Neuroscience Letters, 2004, 360, 153-156.	2.1	6
53	Receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide in the goose cerebral cortex. Polish Journal of Pharmacology, 2004, 56, 203-11.	0.3	5
54	Pertussis toxin-sensitive G protein modulates the ability of histamine to stimulate cAMP production in the chick pineal gland. Polish Journal of Pharmacology, 2004, 56, 407-13.	0.3	1

JOLANTA B ZAWILSKA

#	Article	IF	CITATIONS
55	The relationship between melatonin and dopamine rhythms in the duck retina. Neuroscience Letters, 2003, 347, 37-40.	2.1	15
56	Characterization of histamine H2-like receptors in duck cerebral cortical membranes by [3H]tiotidine binding. Neuroscience Letters, 2002, 319, 149-152.	2.1	1
57	Daily variation in the concentration of 5-methoxytryptophol and melatonin in the duck pineal gland and plasma. Journal of Pineal Research, 2002, 32, 214-218.	7.4	16
58	Retinal melatonin production: role of proteasomal proteolysis in circadian and photic control of arylalkylamine N-acetyltransferase. Investigative Ophthalmology and Visual Science, 2002, 43, 564-72.	3.3	40
59	Prolonged treatment with glucocorticoid dexamethasone suppresses melatonin production by the chick pineal gland and retina. Polish Journal of Pharmacology, 2002, 54, 61-6.	0.3	4
60	Near-ultraviolet radiation suppresses melatonin synthesis in the chicken retina. Life Sciences, 2000, 67, 2233-2246.	4.3	10
61	Prolonged exposure of chicks to light or darkness differentially affects the quinpirole-evoked suppression of serotonin N-acetyltransferase activity in chick retina: An impact on dopamine D4-like receptor. Journal of Pineal Research, 1997, 22, 59-64.	7.4	7
62	Light-induced suppression of nocturnal serotonin N-acetyltransferase activity in chick pineal gland and retina: A wavelength comparison. Journal of Pineal Research, 1995, 19, 87-92.	7.4	28
63	Dopamine-dependent cyclic AMP generating system in chick retina and its relation to melatonin biosynthesis. Neurochemistry International, 1995, 27, 535-543.	3.8	9
64	Clonidine in vivo mimics the acute suppressive but not the phase-shifting effects of light on circadian rhythm of serotonin N-acetyltransferase activity in chick pineal gland. Journal of Pineal Research, 1994, 17, 63-68.	7.4	9
65	Does D4 dopamine receptor mediate the inhibitory effect of light on melatonin biosynthesis in chick retina?. Neuroscience Letters, 1994, 166, 203-206.	2.1	29
66	Stimulation of D4-like dopamine receptor suppresses serotonin N-acetyltransferase activity but does not phase-shift the circadian oscillator in chick retina. Neuroscience Letters, 1994, 179, 107-110.	2.1	12
67	Dopamine receptor regulating serotonin N-acetyltransferase activity in chick retina represents a D4-like subtype: Pharmacological characterization. Neurochemistry International, 1994, 24, 275-280.	3.8	25
68	Chick retina and pineal gland differentially respond to constant light and darkness: in vivo studies on serotoninN-acetyltransferase (NAT) activity and melatonin content. Neuroscience Letters, 1993, 153, 21-24.	2.1	35
69	Melatonin synthesis in chicken retina: Effect of kainic acid-induced lesions on the diurnal rhythm and D2-dopamine receptor-mediated regulation of serotonin N-acetyltransferase activity. Neuroscience Letters, 1992, 135, 71-74.	2.1	79