
Lourdes Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4165410/publications.pdf Version: 2024-02-01

LOUDDES DEDEZ

#	Article	IF	CITATIONS
1	Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. Journal of Colloid and Interface Science, 2011, 355, 164-171.	9.4	369
2	"Green―amino acid-based surfactants. Green Chemistry, 2004, 6, 233-240.	9.0	227
3	Corrosion inhibition of iron in 1 M HCl by some gemini surfactants in the series of alkanediyl-α,ω-bis-(dimethyl tetradecyl ammonium bromide). Progress in Organic Coatings, 2001, 43, 267-273.	3.9	217
4	Determination and speciation of heavy metals in sediments of the Pisuerga river. Water Research, 1990, 24, 373-379.	11.3	212
5	Aggregation Behavior and Antimicrobial Activity of Ester-Functionalized Imidazolium- and Pyridinium-Based Ionic Liquids in Aqueous Solution. Langmuir, 2013, 29, 2536-2545.	3.5	208
6	InÂvitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles. Biomaterials, 2013, 34, 2758-2772.	11.4	166
7	Amino acid–based surfactants: New antimicrobial agents. Advances in Colloid and Interface Science, 2016, 228, 17-39.	14.7	162
8	Synthesis, Aggregation, and Biological Properties of a New Class of Gemini Cationic Amphiphilic Compounds from Arginine, bis(Args). Langmuir, 1996, 12, 5296-5301.	3.5	159
9	Gemini surfactants from natural amino acids. Advances in Colloid and Interface Science, 2014, 205, 134-155.	14.7	142
10	Cationic Surfactants Derived from Lysine: Effects of Their Structure and Charge Type on Antimicrobial and Hemolytic Activities. Journal of Medicinal Chemistry, 2011, 54, 989-1002.	6.4	140
11	Amino acid-based surfactants. Comptes Rendus Chimie, 2004, 7, 583-592.	0.5	138
12	Amino Acids as Raw Material for Biocompatible Surfactants. Industrial & Engineering Chemistry Research, 2011, 50, 4805-4817.	3.7	135
13	Surface Activity Properties at Equilibrium of Novel Gemini Cationic Amphiphilic Compounds from Arginine, Bis(Args). Langmuir, 1998, 14, 2307-2315.	3.5	116
14	Aggregation Behavior in Water of Monomeric and Gemini Cationic Surfactants Derived from Arginine. Langmuir, 1999, 15, 3134-3142.	3.5	113
15	Cationic surfactants from lysine: Synthesis, micellization and biological evaluation. European Journal of Medicinal Chemistry, 2009, 44, 1884-1892.	5.5	113
16	Chemical Structure/Property Relationship in Single-Chain Arginine Surfactants. Langmuir, 2001, 17, 5071-5075.	3.5	95
17	Biological properties of arginineâ€based gemini cationic surfactants. Environmental Toxicology and Chemistry, 2002, 21, 1279-1285.	4.3	92
18	pH-Sensitive Surfactants from Lysine: Assessment of Their Cytotoxicity and Environmental Behavior. Langmuir 2012 28 5900-5912	3.5	89

#	Article	IF	CITATIONS
19	Self-assembly and antimicrobial activity of long-chain amide-functionalized ionic liquids in aqueous solution. Colloids and Surfaces B: Biointerfaces, 2014, 123, 318-325.	5.0	87
20	Role of aggregate size in the hemolytic and antimicrobial activity of colloidal solutions based on single and gemini surfactants from arginine. Soft Matter, 2013, 9, 306-319.	2.7	86
21	Relation of foam stability to solution and surface properties of gemini cationic surfactants derived from arginine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 189, 225-235.	4.7	59
22	Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: Skin penetration behavior and controlled drug release. International Journal of Pharmaceutics, 2017, 529, 245-252.	5.2	55
23	Investigation of the Micellization Process of Single and Gemini Surfactants from Arginine by SAXS, NMR Self-Diffusion, and Light Scattering. Journal of Physical Chemistry B, 2007, 111, 11379-11387.	2.6	52
24	Biocompatible surfactants from renewable hydrophiles. European Journal of Lipid Science and Technology, 2010, 112, 110-121.	1.5	52
25	Synthesis, self-assembly, bacterial and fungal toxicity, and preliminary biodegradation studies of a series of <scp>l</scp> -phenylalanine-derived surface-active ionic liquids. Green Chemistry, 2019, 21, 1777-1794.	9.0	52
26	Micellization and Antimicrobial Properties of Surface-Active Ionic Liquids Containing Cleavable Carbonate Linkages. Langmuir, 2017, 33, 6511-6520.	3.5	46
27	Synthesis and biological properties of dicationic arginine–diglycerides. New Journal of Chemistry, 2002, 26, 1221-1227.	2.8	45
28	Unconventional vesicle-to-ribbon transition behaviour of diacyl glycerol amino acid based surfactants in extremely diluted systems induced by pH-concentration effects. Physical Chemistry Chemical Physics, 2004, 6, 1475-1481.	2.8	42
29	Complex rhamnolipid mixture characterization and its influence on DPPC bilayer organization. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 776-783.	2.6	41
30	Cationic vesicles based on biocompatible diacyl glycerol-arginine surfactants: Physicochemical properties, antimicrobial activity, encapsulation efficiency and drug release. Colloids and Surfaces B: Biointerfaces, 2014, 120, 160-167.	5.0	40
31	Biological properties of arginine-based glycerolipidic cationic surfactants. Green Chemistry, 2005, 7, 540.	9.0	39
32	Synthesis, characterization and surface properties of 1-N-l-tryptophan-glycerol-ether surfactants. Journal of Surfactants and Detergents, 2000, 3, 517-525.	2.1	35
33	New cationic vesicles prepared with double chain surfactants from arginine: Role of the hydrophobic group on the antimicrobial activity and cytotoxicity. Colloids and Surfaces B: Biointerfaces, 2016, 141, 19-27.	5.0	35
34	Low potential ocular irritation of arginine-based gemini surfactants and their mixtures with nonionic and zwitterionic surfactants. Pharmaceutical Research, 2003, 20, 1697-1701.	3.5	34
35	Self Assembly of pH-Sensitive Cationic Lysine Based Surfactants. Langmuir, 2012, 28, 16761-16771.	3.5	34
36	Ribbon-type and cluster-type lipoplexes constituted by a chiral lysine based cationic gemini lipid and plasmid DNA. Soft Matter, 2012, 8, 7368.	2.7	34

#	Article	IF	CITATIONS
37	Green Catanionic Gemini Surfactant–Lichenysin Mixture: Improved Surface, Antimicrobial, and Physiological Properties. ACS Applied Materials & Interfaces, 2017, 9, 22121-22131.	8.0	33
38	Interaction between the Conjugated Polyelectrolyte Poly{1,4-phenylene[9,9-bis(4-phenoxybutylsulfonate)]fluorene-2,7-diyl} Copolymer and the Lecithin Mimic 1-O-(l-Arginyl)-2,3-O-dilauroyl-sn-glycerol in Aqueous Solution. Langmuir, 2006, 22, 10170-10174.	3.5	32
39	Protein-repellent and antimicrobial nanoparticle coatings from hyaluronic acid and a lysine-derived biocompatible surfactant. Journal of Materials Chemistry B, 2017, 5, 3888-3897.	5.8	32
40	Gemini histidine based surfactants: Characterization; surface properties and biological activity. Journal of Molecular Liquids, 2019, 289, 111156.	4.9	32
41	Sequestration of bacterial lipopolysaccharide by bis(Args) gemini compounds. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 357-360.	2.2	30
42	Monoglyceride surfactants from arginine: synthesis and biological properties. New Journal of Chemistry, 2004, 28, 1326-1334.	2.8	30
43	Interactions between Gemini Surfactants and Polymers:Â Thermodynamic Studies. Langmuir, 2007, 23, 5963-5970.	3.5	30
44	Catanionic Vesicles Formed with Arginine-Based Surfactants and 1,2-Dipalmitoyl-sn-glycero-3-phosphate Monosodium Salt. Journal of Physical Chemistry B, 2009, 113, 6321-6327.	2.6	30
45	Monocatenary histidine-based surfactants: Role of the alkyl chain length in antimicrobial activity and their selectivity over red blood cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 501-509.	4.7	29
46	A synthetic alternative to natural lecithins with antimicrobial properties. Colloids and Surfaces B: Biointerfaces, 2004, 35, 235-242.	5.0	28
47	Interaction studies of diacyl glycerol arginine-based surfactants with DPPC and DMPC monolayers, relation with antimicrobial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 319, 196-203.	4.7	28
48	Diacyl glycerol arginine-based surfactants: biological and physicochemical properties of catanionic formulations. Amino Acids, 2011, 40, 721-729.	2.7	28
49	Mixed Monolayer of DPPC and Lysine-Based Cationic Surfactants: An Investigation into the Antimicrobial Activity. Langmuir, 2013, 29, 7912-7921.	3.5	27
50	Thermoresponsive hydrogels with low toxicity from mixtures of ethyl(hydroxyethyl) cellulose and arginine-based surfactants. International Journal of Pharmaceutics, 2012, 436, 454-462.	5.2	26
51	Membrane-destabilizing activity of pH-responsive cationic lysine-based surfactants: role of charge position and alkyl chain length. Amino Acids, 2012, 43, 1203-1215.	2.7	24
52	Self-aggregation in dimeric arginine-based cationic surfactants solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 255, 73-78.	4.7	23
53	Study of the Interaction Between Methyl Orange and Mono and Bisâ€Quaternary Ammonium Surfactants. Journal of Surfactants and Detergents, 2010, 13, 225-231.	2.1	23
54	A novel synergistic formulation between a cationic surfactant from lysine and hyaluronic acid as an antimicrobial coating for advanced cellulose materials. Cellulose, 2014, 21, 2647-2663.	4.9	23

Lourdes Perez

#	Article	IF	CITATIONS
55	New cationic nanovesicular systems containing lysine-based surfactants for topical administration: Toxicity assessment using representative skin cell lines. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 33-43.	4.3	22
56	Rhamnolipids functionalized with basic amino acids: Synthesis, aggregation behavior, antibacterial activity and biodegradation studies. Colloids and Surfaces B: Biointerfaces, 2019, 181, 234-243.	5.0	22
57	Characterization and stability of catanionic vesicles formed by pseudo-tetraalkyl surfactant mixtures. Soft Matter, 2014, 10, 9657-9667.	2.7	21
58	Interaction of Sodium Hyaluronate with a Biocompatible Cationic Surfactant from Lysine: A Binding Study. Langmuir, 2015, 31, 12043-12053.	3.5	20
59	Langmuir monolayers of the zwitterionic surfactant hexadecyl 1-N-l-tryptophan glycerol ether. Journal of Colloid and Interface Science, 2005, 283, 144-152.	9.4	19
60	Lysineâ^'Bisglycidol Conjugates as Novel Lysine Cationic Surfactants. Langmuir, 2009, 25, 7803-7814.	3.5	19
61	Valorization of tannery wastes: Lipoamino acid surfactant mixtures from the protein fraction of process wastewater. Chemical Engineering Journal, 2015, 262, 399-408.	12.7	19
62	Biocompatible Catanionic Vesicles from Arginine-Based Surfactants: A New Strategy to Tune the Antimicrobial Activity and Cytotoxicity of Vesicular Systems. Pharmaceutics, 2020, 12, 857.	4.5	19
63	Aggregation Properties of Diacyl Lysine Surfactant Compounds: Hydrophobic Chain Length and Counterion Effect. Journal of Physical Chemistry B, 2008, 112, 8578-8585.	2.6	18
64	Phospholipid Bilayer-Perturbing Properties Underlying Lysis Induced by pH-Sensitive Cationic Lysine-Based Surfactants in Biomembranes. Langmuir, 2012, 28, 11687-11698.	3.5	17
65	Green cationic arginine surfactants: Influence of the polar head cationic character on the self-aggregation and biological properties. Journal of Molecular Liquids, 2021, 339, 116819.	4.9	17
66	Synthesis and Physicoâ€Chemical Studies of Esterâ€Quat Surfactants in the Series of (Dodecanoyloxy)propyl <i>n</i> â€Alkyl Dimethyl Ammonium Bromide. Journal of Surfactants and Detergents, 2013, 16, 473-485.	2.1	16
67	Bioactive Functional Nanolayers of Chitosan–Lysine Surfactant with Single- and Mixed-Protein-Repellent and Antibiofilm Properties for Medical Implants. ACS Applied Materials & Interfaces, 2021, 13, 23352-23368.	8.0	16
68	Enzymatic synthesis and physicochemical characterization of glycero arginine-based surfactants. Comptes Rendus Chimie, 2004, 7, 169-176.	0.5	15
69	A Gemini Cationic Lipid with Histidine Residues as a Novel Lipid-Based Gene Nanocarrier: A Biophysical and Biochemical Study. Nanomaterials, 2018, 8, 1061.	4.1	15
70	The adsorption kinetics of 1-N-I-tryptophan–glycerol-ether surfactants at the air–liquid interface: effect of surfactant concentration and alkyl chain length. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 233, 137-144.	4.7	14
71	Lichenysin-geminal amino acid-based surfactants: Synergistic action of an unconventional antimicrobial mixture. Colloids and Surfaces B: Biointerfaces, 2017, 149, 38-47.	5.0	14
72	Langmuir Monolayers of Diacyl Glycerol Amino Acid-Based Surfactants. Effect of the Substitution Pattern of the Glycerol Backbone. Langmuir, 2003, 19, 10878-10884.	3.5	13

#	Article	IF	CITATIONS
73	Lysine-based surfactants in nanovesicle formulations: the role of cationic charge position and hydrophobicity inin vitrocytotoxicity and intracellular delivery. Nanotoxicology, 2014, 8, 404-421.	3.0	13
74	Biocompatible Nanovector of siRNA Consisting of Arginine-Based Cationic Lipid for Gene Knockdown in Cancer Cells. ACS Applied Materials & amp; Interfaces, 2020, 12, 34536-34547.	8.0	13
75	Aggregation Behavior, Antibacterial Activity and Biocompatibility of Catanionic Assemblies Based on Amino Acid-Derived Surfactants. International Journal of Molecular Sciences, 2020, 21, 8912.	4.1	13
76	Investigation of the Thermotropic Behavior of Isomer Mixtures of Diacyl Arginine-Based Surfactants. Comparison of Polarized Light Microscopy, DSC, and SAXS Observations. Journal of Physical Chemistry B, 2004, 108, 11080-11088.	2.6	12
77	Selfâ€Aggregation and Emulsifying Properties of Methyl Ester Sulfonate Surfactants. Journal of Surfactants and Detergents, 2017, 20, 1453-1465.	2.1	11
78	Surface tension and adsorption behavior of mixtures of diacyl glycerol arginine-based surfactants with DPPC and DMPC phospholipids. Colloids and Surfaces B: Biointerfaces, 2009, 74, 67-74.	5.0	10
79	Effects of commercial non-ionic alkyl oxyethylene and ionic biocompatible arginine-based surfactants on the photophysical behaviour of several poly(fluorene-1,4-phenylene)s. Journal of Molecular Liquids, 2010, 156, 18-27.	4.9	10
80	Arginine diacyl-glycerolipid conjugates as multifunctional biocompatible surfactants. Comptes Rendus Chimie, 2011, 14, 726-735.	0.5	10
81	Dynamic Properties of Cationic Diacyl-Glycerol-Arginine-Based Surfactant/Phospholipid Mixtures at the Air/Water Interface. Langmuir, 2010, 26, 2559-2566.	3.5	9
82	Inhibition of the corrosion of iron in acidic solution by the oligomeric surfactant N, N, N′, N″, N″â€pentamethyl diethyleneamineâ€N, N″â€diâ€{tetradecylammonium bromide]. Anti-Corrosion Methods a Materials, 2011, 58, 258-266.	ın d .5	9
83	Arginine-phenylalanine and arginine-tryptophan-based surfactants as new biocompatible antifungal agents and their synergistic effect with Amphotericin B against fluconazole-resistant Candida strains. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112017.	5.0	9
84	Biological properties of arginine-based gemini cationic surfactants. Environmental Toxicology and Chemistry, 2002, 21, 1279-85.	4.3	9
85	Catanionic vesicles and DNA complexes: a strategy towards novel gene delivery systems. RSC Advances, 2015, 5, 81168-81175.	3.6	8
86	Arginine-Based Surfactants: Synthesis, Aggregation Properties, and Applications. , 2019, , 413-445.		8
87	Antifungal and antiprotozoal green amino acid-based rhamnolipids: Mode of action, antibiofilm efficiency and selective activity against resistant Candida spp. strains and Acanthamoeba castellanii. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111148.	5.0	8
88	Antifungal activity of amino-alcohols based cationic surfactants and in silico, homology modeling, docking and molecular dynamics studies against lanosterol 14-1±-demethylase enzyme. Journal of Biomolecular Structure and Dynamics, 2022, 40, 7762-7778.	3.5	8
89	Protein Expression Knockdown in Cancer Cells Induced by a Gemini Cationic Lipid Nanovector with Histidine-Based Polar Heads. Pharmaceutics, 2020, 12, 791.	4.5	7
90	The environmental impact of chromium salts: Ecotoxicity and inhibition of surfactant biodegradation. Toxicological and Environmental Chemistry, 1994, 44, 225-232.	1.2	6

#	Article	IF	CITATIONS
91	Gemini Surfactant Binding onto Hydrophobically Modified Silica Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 12142-12148.	3.1	6
92	Synthesis of 1,3-Bis-[(Dodecanoyl Oxypropyl Dimethylammonium) Propane] Dibromide Ester-Quat Surfactant: Micellar, Thermodynamic and Corrosion-Inhibiting Properties. Tenside, Surfactants, Detergents, 2007, 44, 160-167.	1.2	2
93	Aqueous self-assembly and physicochemical properties of 1,2-dilauroyl-rac-glycero-3-(Nα-acetyl-l-arginine). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 327, 111-121.	4.7	2
94	Preparation of a New Oligomeric Surfactant: <i>N</i> , <i>N</i> , <i>N</i> ′, <i>N</i> ″, <i>N</i> ″â€Pentamet Diethyleneamine— <i>N</i> , <i>N</i> ″â€Diâ€{Tetradecylammonium Bromide] and the Study of its Thermodynamic Properties. Journal of Surfactants and Detergents, 2010, 13, 339-348.	hyl 2.1	2
95	Interfacial Chiral Selection by Bulk Species. Chemistry - A European Journal, 2014, 20, 7396-7401.	3.3	2
96	Glycerolipid arginine-based surfactants: synthesis and surface active properties. , 0, , 210-216.		2
97	Formation and stability of highly concentrated emulsions (gel emulsions): influence of aromatic aliphatic hydrocarbon interactions. Progress in Colloid and Polymer Science, 1997, 105, 244-251.	0.5	2
98	BIOLOGICAL PROPERTIES OF ARGININE-BASED GEMINI CATIONIC SURFACTANTS. Environmental Toxicology and Chemistry, 2002, 21, 1279.	4.3	2
99	Comparative study of conventional and compact detergents. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 27-30.	1.9	1
100	Glycerolipid arginine-based surfactants: synthesis and surface active properties. , 0, , 210-216.		1
101	Study of a Model for the Interaction Between Heavy Metals and Sediments of the Pisuerga River. International Journal of Environmental Analytical Chemistry, 1990, 41, 89-97.	3.3	0
102	Membrane perturbing properties of biocompatible cationic lysine-based surfactants. Toxicology Letters, 2011, 205, S169.	0.8	0