Paulo R De Matos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4164961/publications.pdf

Version: 2024-02-01

46 papers 1,092 citations

448610 19 h-index 32 g-index

46 all docs

46 docs citations

times ranked

46

672 citing authors

#	Article	IF	CITATIONS
1	The role of sodium and sulfate sources on the rheology and hydration of C3A polymorphs. Cement and Concrete Research, 2022, 151, 106639.	4.6	24
2	Ternary cements produced with non-calcined clay, limestone, and Portland clinker. Journal of Building Engineering, 2022, 45, 103437.	1.6	8
3	Long-term effect of recycled aggregate on microstructure, mechanical properties, and CO2 sequestration of rendering mortars. Construction and Building Materials, 2022, 321, 126357.	3.2	14
4	Single-burn clinkering of endodontic calcium silicate-based cements: Effects of ZnO in the C3S phase formation and hydration rate. Materials Letters, 2022, 311, 131556.	1.3	1
5	Effect of the nanosilica source on the rheology and early-age hydration of calcium sulfoaluminate cement pastes. Construction and Building Materials, 2022, 327, 126942.	3.2	10
6	Evaluation of different organosilanes on multi-walled carbon nanotubes functionalization for application in cementitious composites. Journal of Building Engineering, 2022, 51, 104292.	1.6	12
7	Strategies for XRD quantitative phase analysis of ordinary and blended Portland cements. Cement and Concrete Composites, 2022, 131, 104571.	4.6	19
8	Effect of TiO2 Nanoparticles on the Fresh Performance of 3D-Printed Cementitious Materials. Materials, 2022, 15, 3896.	1.3	7
9	Effect of Activator Type and Concentration, Water-to-Solid Ratio, and Time on the Flowability of Metakaolin-Based Geopolymer Pastes. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	3
10	Hydration and interactions between pure and doped C3S and C3A in the presence of different calcium sulfates. Cement and Concrete Research, 2022, 159, 106893.	4.6	19
11	High- and ultra-high-performance concrete produced with sulfate-resisting cement and steel microfiber: Autogenous shrinkage, fresh-state, mechanical properties and microstructure characterization. Construction and Building Materials, 2021, 268, 121092.	3.2	25
12	Influência de adições minerais na elevação da temperatura de concretos massa de elevada resistência à compressão. Revista Materia, 2021, 26, .	0.1	2
13	Rheology, Hydration, and Microstructure of Portland Cement Pastes Produced with Ground AçaÃ-Fibers. Applied Sciences (Switzerland), 2021, 11, 3036.	1.3	50
14	Effect of thermal treatment of SiC nanowhiskers on rheological, hydration, mechanical and microstructure properties of Portland cement pastes. Cement and Concrete Composites, 2021, 117, 103903.	4.6	14
15	Combined Functionalization of Carbon Nanotubes (CNT) Fibers with H2SO4/HNO3 and Ca(OH)2 for Addition in Cementitious Matrix. Fibers, 2021, 9, 14.	1.8	10
16	Rheological and the Fresh State Properties of Alkali-Activated Mortars by Blast Furnace Slag. Materials, 2021, 14, 2069.	1.3	83
17	Thermosensitive hydrogels for vaginal delivery of secnidazole as an approach to overcome the systemic side-effects of oral preparations. European Journal of Pharmaceutical Sciences, 2021, 159, 105722.	1.9	18
18	Utilization of ceramic tile demolition waste as supplementary cementitious material: An early-age investigation. Journal of Building Engineering, 2021, 38, 102187.	1.6	33

#	Article	IF	CITATIONS
19	Is the R index accurate to assess the preferred orientation of portlandite in cement pastes?. Construction and Building Materials, 2021, 292, 123471.	3.2	16
20	Utilization of Thermally Treated SiC Nanowhiskers and Superplasticizer for Cementitious Composite Production. Materials, 2021, 14, 4062.	1.3	3
21	Materials for Production of High and Ultra-High Performance Concrete: Review and Perspective of Possible Novel Materials. Materials, 2021, 14, 4304.	1.3	86
22	Influence of Ultrasonication of Functionalized Carbon Nanotubes on the Rheology, Hydration, and Compressive Strength of Portland Cement Pastes. Materials, 2021, 14, 5248.	1.3	22
23	Effect of Carbon Nanotubes (CNTs) aspect ratio on the rheology, thermal conductivity and mechanical performance of Portland cement paste. Revista IBRACON De Estruturas E Materiais, 2021, 14,	0.3	6
24	Workability maintenance of water-reducing admixtures in high-performance pastes produced with different types of Portland cement. Revista Materia, 2021, 26, .	0.1	1
25	Use of calcined water treatment plant sludge for sustainable cementitious composites production. Journal of Cleaner Production, 2021, 327, 129484.	4.6	18
26	Functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane for application in cementitious matrix. Construction and Building Materials, 2021, 311, 125358.	3.2	16
27	Evaluating the variability of the modulus of elasticity of concrete through the use of different types and batches of aggregate. Revista Materia, 2021, 26, .	0.1	1
28	Use of recycled water from mixer truck wash in concrete: Effect on the hydration, fresh and hardened properties. Construction and Building Materials, 2020, 230, 116981.	3.2	51
29	Effectiveness of fly ash in reducing the hydration heat release of mass concrete. Journal of Building Engineering, 2020, 28, 101063.	1.6	23
30	Self-compacting mortars produced with fine fraction of calcined waste foundry sand (WFS) as alternative filler: Fresh-state, hydration and hardened-state properties. Journal of Cleaner Production, 2020, 252, 119871.	4.6	29
31	Comparison between methods for determining the yield stress of cement pastes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	0.8	29
32	Effect of porcelain tile polishing residue on eco-efficient geopolymer: Rheological performance of pastes and mortars. Journal of Building Engineering, 2020, 32, 101699.	1.6	17
33	Rheological and hydration behaviour of cement pastes containing porcelain polishing residue and different water-reducing admixtures. Construction and Building Materials, 2020, 262, 120850.	3.2	15
34	Use of air-cooled blast furnace slag as supplementary cementitious material for self-compacting concrete production. Construction and Building Materials, 2020, 262, 120102.	3.2	29
35	Rheological properties and surface finish quality of eco-friendly self-compacting concretes containing quarry waste powders. Journal of Cleaner Production, 2020, 257, 120508.	4.6	31
36	Effect of partial substitution of superplasticizer by silanes in Portland cement pastes. Journal of Building Engineering, 2020, 29, 101226.	1.6	16

3

#	Article	IF	CITATION
37	Eco-friendly ultra-high performance cement pastes produced with quarry wastes as alternative fillers. Journal of Cleaner Production, 2020, 269, 122308.	4.6	41
38	Using ready-mixed mortars in concrete block structural masonry. Ambiente ConstruÃdo, 2020, 20, 431-449.	0.2	1
39	Eco-efficient low binder high-performance self-compacting concretes. Construction and Building Materials, 2019, 225, 941-955.	3.2	37
40	Fresh and hardened properties of self-compacting concretes produced with diabase and gneiss quarry by-product powders as alternative fillers. Construction and Building Materials, 2019, 224, 659-670.	3.2	24
41	Influência do uso de cinza volante na elevação adiabática de temperatura e resistência à compressão de concretos. Revista Materia, 2019, 24, .	0.1	6
42	Ecological, fresh state and long-term mechanical properties of high-volume fly ash high-performance self-compacting concrete. Construction and Building Materials, 2019, 203, 282-293.	3.2	89
43	Novel applications of waste foundry sand in conventional and dry-mix concretes. Journal of Environmental Management, 2019, 244, 294-303.	3.8	44
44	Efeito da substitui ção do cimento por cinza volante em concretos autoadens áveis de alto desempenho. , 2019, , .		0
45	Use of porcelain polishing residue as a supplementary cimentitious material in self-compacting concrete. Construction and Building Materials, 2018, 193, 623-630.	3.2	45
46	Rheological behavior of Portland cement pastes and self-compacting concretes containing porcelain polishing residue. Construction and Building Materials, 2018, 175, 508-518.	3.2	44