Jannis Jakobi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4164912/publications.pdf

Version: 2024-02-01

		1040056	1281871	
12	324	9	11	
papers	citations	h-index	g-index	
22	22	22	301	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 2022, 14, 1125-1151.	9.9	33
2	Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site WA¼stebach. Earth System Science Data, 2022, 14, 2501-2519.	9.9	9
3	Comment on Dong and Ochsner (2018): "Soil Texture Often Exerts Stronger Influence Than Precipitation on Mesoscale Soil Moisture Patterns― Water Resources Research, 2021, 57, e2020WR027790.	4.2	1
4	The SARSense Campaign: Air- and Space-Borne C- and L-Band SAR for the Analysis of Soil and Plant Parameters in Agriculture. Remote Sensing, 2021, 13, 825.	4.0	14
5	The Footprint Characteristics of Cosmic Ray Thermal Neutrons. Geophysical Research Letters, 2021, 48, e2021GL094281.	4.0	14
6	Monitoring of Snowpack Dynamics With Cosmic-Ray Neutron Probes: A Comparison of Four Conversion Methods. Frontiers in Water, 2020, 2, .	2.3	19
7	A profile shape correction to reduce the vertical sensitivity of cosmicâ€ray neutron sensing of soil moisture. Vadose Zone Journal, 2020, 19, e20083.	2.2	18
8	Error Estimation for Soil Moisture Measurements With Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Frontiers in Water, 2020, 2, .	2.3	33
9	A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany. Earth System Science Data, 2020, 12, 2289-2309.	9.9	44
10	Sarsense: A C- and L-Band SAR Rehearsal Campaign in Germany in Preparation for ROSE-L. , 2020, , .		1
11	The TERENOâ€Rur Hydrological Observatory: A Multiscale Multiâ€Compartment Research Platform for the Advancement of Hydrological Science. Vadose Zone Journal, 2018, 17, 1-22.	2.2	81
12	Cosmic Ray Neutron Sensing for Simultaneous Soil Water Content and Biomass Quantification in Drought Conditions. Water Resources Research, 2018, 54, 7383-7402.	4.2	54