Manabu Niimi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4164694/publications.pdf

Version: 2024-02-01

516561 477173 33 826 16 29 citations h-index g-index papers 34 34 34 1157 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Treatment of atherosclerosis by traditional Chinese medicine: Questions and quandaries. Atherosclerosis, 2018, 277, 136-144.	0.4	97
2	ApoE knockout rabbits: A novel model for the study of human hyperlipidemia. Atherosclerosis, 2016, 245, 187-193.	0.4	70
3	Human Apolipoprotein A-II Protects Against Diet-Induced Atherosclerosis in Transgenic Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 224-231.	1.1	57
4	Bisphenol A exposure induces metabolic disorders and enhances atherosclerosis in hyperlipidemic rabbits. Journal of Applied Toxicology, 2015, 35, 1058-1070.	1.4	57
5	Detection of apolipoproteins B-48 and B-100 carrying particles in lipoprotein fractions extracted from human aortic atherosclerotic plaques in sudden cardiac death cases. Clinica Chimica Acta, 2008, 390, 38-43.	0.5	55
6	Principles and Applications of Rabbit Models for Atherosclerosis Research. Journal of Atherosclerosis and Thrombosis, 2018, 25, 213-220.	0.9	55
7	Deficiency of Cholesteryl Ester Transfer Protein Protects Against Atherosclerosis in Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1068-1075.	1.1	47
8	Bisphenol A Exposure Enhances Atherosclerosis in WHHL Rabbits. PLoS ONE, 2014, 9, e110977.	1.1	45
9	Decreased post-prandial triglyceride response and diminished remnant lipoprotein formation in cholesteryl ester transfer protein (CETP) deficiency. Atherosclerosis, 2008, 196, 953-957.	0.4	38
10	Probucol Suppresses Macrophage Infiltration and MMP Expression in Atherosclerotic Plaques of WHHL Rabbits. Journal of Atherosclerosis and Thrombosis, 2014, 21, 648-658.	0.9	30
11	Increased Hepatic Expression of Endothelial Lipase Inhibits Cholesterol Diet–Induced Hypercholesterolemia and Atherosclerosis in Transgenic Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1282-1289.	1.1	30
12	Cholesterol efflux from J774 macrophages and Fu5AH hepatoma cells to serum is preserved in CETP-deficient patients. Clinica Chimica Acta, 2009, 402, 19-24.	0.5	26
13	Probucol inhibits the initiation of atherosclerosis in cholesterol-fed rabbits. Lipids in Health and Disease, 2013, 12, 166.	1.2	25
14	Hyperlipidemia-associated gene variations and expression patterns revealed by whole-genome and transcriptome sequencing of rabbit models. Scientific Reports, 2016, 6, 26942.	1.6	24
15	Apolipoprotein CIII Deficiency Protects Against Atherosclerosis in Knockout Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2095-2107.	1.1	19
16	Angiotensin II Destabilizes Coronary Plaques in Watanabe Heritable Hyperlipidemic Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 810-816.	1.1	16
17	Detection of potential new biomarkers of atherosclerosis by probe electrospray ionization mass spectrometry. Metabolomics, 2018, 14, 38.	1.4	16
18	Evidence for Conformational Change of Fatty Acid-Binding Protein Accompanying Binding of Hydrophobic Ligands1. Journal of Biochemistry, 1994, 116, 1025-1029.	0.9	15

#	Article	IF	CITATIONS
19	Cilostazol Inhibits Accumulation of Triglyceride in Aorta and Platelet Aggregation in Cholesterol-Fed Rabbits. PLoS ONE, 2012, 7, e39374.	1.1	15
20	Add-On Effect of Probucol in Atherosclerotic, Cholesterol-Fed Rabbits Treated with Atorvastatin. PLoS ONE, 2014, 9, e96929.	1.1	15
21	Tanshinone IIA Stimulates Cystathionine \hat{I}^3 -Lyase Expression and Protects Endothelial Cells from Oxidative Injury. Antioxidants, 2021, 10, 1007.	2.2	13
22	Glutathione inhibits antibody and complement-mediated immunologic cell injury via multiple mechanisms. Redox Biology, 2017, 12, 571-581.	3.9	10
23	Sex hormones affect endothelial lipase-mediated lipid metabolism and atherosclerosis. Lipids in Health and Disease, 2019, 18, 226.	1.2	9
24	Strategies for Highly Efficient Rabbit Sperm Cryopreservation. Animals, 2021, 11, 1220.	1.0	9
25	Hyperlipidemic Rabbit Models for Anti-Atherosclerotic Drug Development. Applied Sciences (Switzerland), 2020, 10, 8681.	1.3	7
26	Suramin inhibits antibody binding to cell surface antigens and disrupts complement-mediated mesangial cell lysis. Journal of Pharmacological Sciences, 2016, 132, 224-234.	1.1	5
27	Dietary Cholesterol Atherogenic Changes in Juvenile Rabbits. Biological and Pharmaceutical Bulletin, 2015, 38, 785-788.	0.6	4
28	Isolation and Analysis of Plasma Lipoproteins by Ultracentrifugation. Journal of Visualized Experiments, 2021, , .	0.2	4
29	Endothelial Lipase Exerts its Anti-Atherogenic Effect through Increased Catabolism of \hat{l}^2 -VLDLs. Journal of Atherosclerosis and Thrombosis, 2021, 28, 157-168.	0.9	3
30	Comparative studies of three cholesteryl ester transfer proteins and their interactions with known inhibitors. PLoS ONE, 2017, 12, e0180772.	1.1	3
31	Use of Rabbit Models to Study. Methods in Molecular Biology, 2022, 2419, 413-431.	0.4	1
32	Is apoCIII-Lowering A Double-Edged Sword?. Journal of Atherosclerosis and Thrombosis, 2022, , .	0.9	0
33	Pathological Investigations of Intracranial Atherosclerosis Using Multiple Hypercholesterolemic Rabbit Models. Frontiers in Endocrinology, 2022, 13, .	1.5	0