## Hongguang Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4164670/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes.<br>Water Research, 2017, 113, 80-88.                                                                                          | 11.3 | 776       |
| 2  | Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes:<br>Activation performance and structure-function relationship. Water Research, 2019, 157, 406-414.                            | 11.3 | 263       |
| 3  | Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40: Singlet oxygen generation and degradation for aquatic levofloxacin. Chemical Engineering Journal, 2018, 343, 128-137.                                    | 12.7 | 252       |
| 4  | Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 424, 74-80. | 4.7  | 169       |
| 5  | Heterogeneous activation of persulfate for Rhodamine B degradation with 3D flower sphere-like<br>BiOI/Fe3O4 microspheres under visible light irradiation. Separation and Purification Technology, 2018,<br>192, 88-98.         | 7.9  | 139       |
| 6  | Enhanced degradation of aqueous norfloxacin and enrofloxacin by UV-activated persulfate: Kinetics, pathways and deactivation. Chemical Engineering Journal, 2017, 316, 471-480.                                                | 12.7 | 133       |
| 7  | Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst. Journal of Hazardous Materials, 2012, 227-228, 227-236.                                               | 12.4 | 122       |
| 8  | Kinetics and transformation pathways on oxidation of fluoroquinolones with thermally activated persulfate. Chemical Engineering Journal, 2016, 292, 82-91.                                                                     | 12.7 | 120       |
| 9  | Oxidation of 2,4-dichlorophenol by non-radical mechanism using persulfate activated by Fe/S modified carbon nanotubes. Journal of Colloid and Interface Science, 2016, 469, 277-286.                                           | 9.4  | 106       |
| 10 | Activation of peroxymonosulfate by BiVO 4 under visible light for degradation of Rhodamine B.<br>Chemical Physics Letters, 2016, 653, 101-107.                                                                                 | 2.6  | 105       |
| 11 | Interactions between the antibiotic tetracycline and humic acid: Examination of the binding sites, and effects of complexation on the oxidation of tetracycline. Water Research, 2021, 202, 117379.                            | 11.3 | 75        |
| 12 | Metal-free carbocatalysis for persulfate activation toward nonradical oxidation: Enhanced singlet<br>oxygen generation based on active sites and electronic property. Chemical Engineering Journal, 2020,<br>396, 125107.      | 12.7 | 74        |
| 13 | Fe@C carbonized resin for peroxymonosulfate activation and bisphenol S degradation. Environmental Pollution, 2019, 252, 1042-1050.                                                                                             | 7.5  | 66        |
| 14 | Crucial roles of oxygen and superoxide radical in bisulfite-activated persulfate oxidation of<br>bisphenol AF: Mechanisms, kinetics and DFT studies. Journal of Hazardous Materials, 2020, 391, 122228.                        | 12.4 | 64        |
| 15 | Highly efficient removal of trimethoprim based on peroxymonosulfate activation by carbonized resin with Co doping: Performance, mechanism and degradation pathway. Chemical Engineering Journal, 2019, 356, 717-726.           | 12.7 | 59        |
| 16 | Enhanced kinetic performance of peroxymonosulfate/ZVI system with the addition of copper ions:<br>Reactivity, mechanism, and degradation pathways. Journal of Hazardous Materials, 2020, 393, 122399.                          | 12.4 | 58        |
| 17 | Peroxymonosulfate activation by porous BiFeO3 for the degradation of bisphenol AF: Non-radical and radical mechanism. Applied Surface Science, 2020, 507, 145097.                                                              | 6.1  | 57        |
| 18 | Tannery wastewater treatment: conventional and promising processes, an updated 20-year review.<br>Journal of Leather Science and Engineering, 2022, 4, .                                                                       | 6.0  | 54        |

Hongguang Guo

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Heterogeneous activation of peroxymonosulfate for bisphenol AF degradation with<br>BiOI <sub>0.5</sub> Cl <sub>0.5</sub> . RSC Advances, 2019, 9, 14060-14071.                                                                                  | 3.6  | 50        |
| 20 | ROS reevaluation for degradation of 4-chloro-3,5-dimethylphenol (PCMX) by UV and UV/persulfate<br>processes in the water: Kinetics, mechanism, DFT studies and toxicity evolution. Chemical Engineering<br>Journal, 2020, 390, 124610.          | 12.7 | 43        |
| 21 | Multifunctional capacity of CoMnFe-LDH/LDO activated peroxymonosulfate for p-arsanilic acid removal and inorganic arsenic immobilization: Performance and surface-bound radical mechanism. Science of the Total Environment, 2022, 806, 150379. | 8.0  | 42        |
| 22 | Degradation of Bisphenol A Using Ozone/Persulfate Process: Kinetics and Mechanism. Water, Air, and Soil Pollution, 2016, 227, 1.                                                                                                                | 2.4  | 41        |
| 23 | Kinetic performance of peroxymonosulfate activated by Co/Bi25FeO40: radical and non-radical mechanism. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100, 56-64.                                                                 | 5.3  | 38        |
| 24 | Feasible oxidation of 17β-estradiol using persulfate activated by<br>Bi <sub>2</sub> WO <sub>6</sub> /Fe <sub>3</sub> O <sub>4</sub> under visible light irradiation. RSC<br>Advances, 2016, 6, 79910-79919.                                    | 3.6  | 30        |
| 25 | Insight into the role of binding interaction in the transformation of tetracycline and toxicity distribution. Environmental Science and Ecotechnology, 2021, 8, 100127.                                                                         | 13.5 | 23        |
| 26 | Analysis on the removal of ammonia nitrogen using peroxymonosulfate activated by nanoparticulate zero-valent iron. Chemical Papers, 2017, 71, 1497-1505.                                                                                        | 2.2  | 22        |
| 27 | Persulfate-assisted photodegradation of diethylstilbestrol using monoclinic BiVO4 under visible-light irradiation. Environmental Science and Pollution Research, 2017, 24, 3739-3747.                                                           | 5.3  | 21        |
| 28 | Staged assessment for the involving mechanism of humic acid on enhancing water decontamination using H2O2-Fe(III) process. Journal of Hazardous Materials, 2021, 407, 124853.                                                                   | 12.4 | 20        |
| 29 | Differential ATR FTIR spectroscopy of membrane fouling: Contributions of the substrate/fouling films and correlations with transmembrane pressure. Water Research, 2019, 161, 27-34.                                                            | 11.3 | 19        |
| 30 | Generality and diversity on the kinetics, toxicity and DFT studies of sulfate radical-induced transformation of BPA and its analogues. Water Research, 2022, 219, 118506.                                                                       | 11.3 | 17        |
| 31 | Probing the roles of pH and ionic strength on electrostatic binding of tetracycline by dissolved organic matters: Reevaluation of modified fitting model. Environmental Science and Ecotechnology, 2021, 8, 100133.                             | 13.5 | 16        |
| 32 | Estimation of the potential spread risk of COVID-19: Occurrence assessment along the Yangtze, Han, and Fu River basins in Hubei, China. Science of the Total Environment, 2020, 746, 141353.                                                    | 8.0  | 15        |
| 33 | Performance and Mechanism on Degradation of Estriol Using O <sub>3</sub> /PS Process. Ozone:<br>Science and Engineering, 2016, 38, 358-366.                                                                                                     | 2.5  | 14        |
| 34 | Amino-modified metal–organic frameworks as peroxymonosulfate catalyst for bisphenol AF<br>decontamination: ROS generation, degradation pathways, and toxicity evaluation. Separation and<br>Purification Technology, 2022, 282, 119967.         | 7.9  | 13        |
| 35 | Highly efficient removal of DEET by UV-LED irradiation in the presence of iron-containing coagulant.<br>Chemosphere, 2022, 286, 131613.                                                                                                         | 8.2  | 11        |
| 36 | Photoreduction of Cr(VI) in water using BiVO4-Fe3O4 nano-photocatalyst under visible light irradiation. Environmental Science and Pollution Research, 2017, 24, 28239-28247.                                                                    | 5.3  | 10        |

Hongguang Guo

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Interactions between natural organic matter (NOM) and the cationic dye toluidine blue at varying pHs<br>and ionic strengths: Effects of NOM charges and Donnan gel potentials. Chemosphere, 2019, 236,<br>124272. | 8.2 | 10        |
| 38 | Impact of hydrological factors on the dynamic of COVID-19 epidemic: A multi-region study in China.<br>Environmental Research, 2021, 198, 110474.                                                                  | 7.5 | 10        |
| 39 | Preparation and characterization of hierarchical BiO0.5Cl0.5 with excellent adsorption and photocatalytic abilities for removal of aquatic dyes. , 0, 201, 356-368.                                               |     | 2         |
| 40 | Multi-spectroscopic Investigation on Mechanism of Binding Interaction between Humic Acid and Ciprofloxacin. Acta Chimica Sinica, 2021, 79, 1494.                                                                  | 1.4 | 2         |
| 41 | Removal of Cr(III) and Cu(II) from aqueous solution by fulvic acid functionalized magnetite nanoparticles. , 0, 109, 271-278.                                                                                     |     | 0         |