Alan Armstrong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4163632/publications.pdf

Version: 2024-02-01

91712 76196 5,417 120 40 69 citations h-index g-index papers 160 160 160 4441 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature, 2006, 441, 621-623.	13.7	370
2	Direct Azole Amination: CH Functionalization as a New Approach to Biologically Important Heterocycles. Angewandte Chemie - International Edition, 2010, 49, 2282-2285.	7.2	269
3	Clarification of the Role of Water in Proline-Mediated Aldol Reactions. Journal of the American Chemical Society, 2007, 129, 15100-15101.	6.6	251
4	A new method for the preparation of tertiary butyl ethers and esters. Tetrahedron Letters, 1988, 29, 2483-2486.	0.7	178
5	The Flow's the Thing…ï¸Or Is It? Assessing the Merits of Homogeneous Reactions in Flask and Flow. Angewandte Chemie - International Edition, 2010, 49, 2478-2485.	7.2	175
6	The Houk–List transition states for organocatalytic mechanisms revisited. Chemical Science, 2014, 5, 2057-2071.	3.7	154
7	Mechanistic Rationalization of Organocatalyzed Conjugate Addition of Linear Aldehydes to Nitro-olefins. Journal of the American Chemical Society, 2011, 133, 8822-8825.	6.6	145
8	Computer-aided molecular design of solvents for accelerated reaction kinetics. Nature Chemistry, 2013, 5, 952-957.	6.6	141
9	Curtin–Hammett Paradigm for Stereocontrol in Organocatalysis by Diarylprolinol Ether Catalysts. Journal of the American Chemical Society, 2012, 134, 6741-6750.	6.6	139
10	Catalytic enantioselective epoxidation of alkenes with a tropinone-derived chiral ketone. Chemical Communications, 1998, , 621-622.	2.2	115
11	Structure of eukaryotic purine/H+ symporter UapA suggests a role for homodimerization in transport activity. Nature Communications, 2016, 7, 11336.	5.8	108
12	Total synthesis of the anthelmintic macrolide avermectin B1a. Journal of the Chemical Society Perkin Transactions 1, 1991, , 667-692.	0.9	106
13	Unusual Reversal of Enantioselectivity in the Proline-Mediated α-Amination of Aldehydes Induced by Tertiary Amine Additives. Journal of the American Chemical Society, 2010, 132, 7598-7599.	6.6	103
14	Probing the Active Catalyst in Product-Accelerated Proline-Mediated Reactions. Journal of the American Chemical Society, 2004, 126, 16312-16313.	6.6	99
15	Amine-Promoted, Organocatalytic Aziridination of Enones. Organic Letters, 2007, 9, 351-353.	2.4	98
16	A highly convergent total synthesis of the spiroacetal macrolide (+)-milbemycin \hat{l}^2 1. Tetrahedron, 1989, 45, 7161-7194.	1.0	94
17	Enantioselective Epoxidation of Alkenes Catalyzed by 2-Fluoro-N-Carbethoxytropinone and Related Tropinone Derivatives. Journal of Organic Chemistry, 2002, 67, 8610-8617.	1.7	85
18	Oxaziridine-Mediated Amination of Primary Amines:  Scope and Application to a One-Pot Pyrazole Synthesis. Organic Letters, 2005, 7, 713-716.	2.4	83

#	Article	IF	Citations
19	Explaining Anomalies in Enamine Catalysis: "Downstream Species―as a New Paradigm for Stereocontrol. Accounts of Chemical Research, 2016, 49, 214-222.	7.6	75
20	Kinetic and mechanistic studies of proline-mediated direct intermolecular aldol reactions. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3934-3937.	1.0	73
21	Stereocontrolled Synthesis of 3-(trans-2-Aminocyclopropyl)alanine, a Key Component of Belactosin A. Organic Letters, 2003, 5, 2331-2334.	2.4	72
22	Exocyclic iminium salts as catalysts for alkene epoxidation by Oxone®. Tetrahedron, 1999, 55, 2341-2352.	1.0	64
23	Highâ€Throughput Kinetic Analysis for Targetâ€Directed Covalent Ligand Discovery. Angewandte Chemie - International Edition, 2018, 57, 5257-5261.	7.2	59
24	Transition State Stereoelectronics in Alkene Epoxidations by Fluorinated Dioxiranes. Journal of the American Chemical Society, 2000, 122, 6297-6298.	6.6	58
25	Recent synthetic studies on the zaragozic acids (squalestatins). Tetrahedron, 2002, 58, 9321-9349.	1.0	58
26	Amine-Catalyzed Epoxidation of Alkenes: A New Mechanism for the Activation of Oxone. Angewandte Chemie - International Edition, 2004, 43, 1460-1462.	7.2	58
27	α-Fluorotropinone Immobilized on Silica: A New Stereoselective Heterogeneous Catalyst for Epoxidation of Alkenes with Oxone. Journal of Organic Chemistry, 2003, 68, 3232-3237.	1.7	57
28	Kinetic Rationalization of Nonlinear Effects in Asymmetric Catalysis Based on Phase Behavior. Angewandte Chemie - International Edition, 2006, 45, 7989-7992.	7.2	56
29	Enantioselective Synthesis of Allenamides via Sulfimide [2,3]-Sigmatropic Rearrangement. Organic Letters, 2009, 11, 1547-1550.	2.4	55
30	Total Synthesis of (+)-Zaragozic Acid C. Journal of Organic Chemistry, 2000, 65, 7020-7032.	1.7	54
31	Total synthesis of (+)-belactosin A. Chemical Communications, 2004, , 510-511.	2.2	53
32	Aza-Prins-Pinacol Approach to 7-Azabicyclo[2.2.1]heptanes:  Syntheses of (±)-Epibatidine and (±)-Epiboxidine. Journal of Organic Chemistry, 2007, 72, 8019-8024.	1.7	53
33	Enamine Carboxylates as Stereodetermining Intermediates in Prolinate Catalysis. Organic Letters, 2011, 13, 5644-5647.	2.4	53
34	Constrained \hat{I}^2 -Proline Analogues in Organocatalytic Aldol Reactions: The Influence of Acid Geometry. Journal of Organic Chemistry, 2009, 74, 5041-5048.	1.7	48
35	Exploiting Organocatalysis: Enantioselective Synthesis of Vinyl Glycines by Allylic Sulfimide [2,3]â€Sigmatropic Rearrangement. Angewandte Chemie - International Edition, 2007, 46, 5369-5372.	7.2	47
36	Alkene epoxidation catalyzed by bicyclo[3.2.1]octan-3-ones: effects of structural modifications on catalyst efficiency and epoxidation enantioselectivity. Tetrahedron: Asymmetry, 2000, 11, 2057-2061.	1.8	45

#	Article	IF	Citations
37	Kinetic Templateâ€Guided Tethering of Fragments. ChemMedChem, 2012, 7, 2082-2086.	1.6	45
38	Kinetic correlation between aldehyde/enamine stereoisomers in reactions between aldehydes with α-stereocenters and chiral pyrrolidine-based catalysts. Chemical Science, 2012, 3, 1273.	3.7	45
39	Pyrrolidine-Derived Iminium Salts as Catalysts for Alkene Epoxidation by Oxone®. Synlett, 1997, 1997, 1075-1076.	1.0	42
40	Catalytic asymmetric bromolactonization reactions using (DHQD)2PHAL-benzoic acid combinations. Tetrahedron Letters, 2013, 54, 7004-7008.	0.7	42
41	Asymmetric epoxidation catalyzed by esters of \hat{l} ±-hydroxy-8-oxabicyclo[3.2.1]octan-3-one. Tetrahedron: Asymmetry, 2001, 12, 2779-2781.	1.8	41
42	Total synthesis of (+)-zaragozic acid C. Tetrahedron Letters, 1998, 39, 3337-3340.	0.7	39
43	Efficient amination of sulfides with a ketomalonate-derived oxaziridine: application to [2,3]-sigmatropic rearrangements of allylic sulfimidesElectronic supplementary information (ESI) available: experimental details and characterisation data. See http://www.rsc.org/suppdata/cc/b2/b201791a/. Chemical Communications. 2002 904-905.	2.2	38
44	A Coherent Mechanistic Rationale for Additive Effects and Autoinductive Behaviour in Prolineâ€Mediated Reactions. Advanced Synthesis and Catalysis, 2009, 351, 2765-2769.	2.1	38
45	Exploitation of Antibiotic Resistance as a Novel Drug Target: Development of a β-Lactamase-Activated Antibacterial Prodrug. Journal of Medicinal Chemistry, 2019, 62, 4411-4425.	2.9	38
46	A mechanistic rationalization of unusual kinetic behavior in proline-mediated C–O and C–N bond-forming reactions. Chemical Communications, 2006, , 4291-4293.	2.2	37
47	Synthetic studies on amphidinolides C and F: synthesis of the C18–C29 segment of amphidinolide F. Tetrahedron Letters, 2009, 50, 3325-3328.	0.7	37
48	\hat{l}_{\pm} -Functionalised ketones as promoters of alkene epoxidation by Oxone $\hat{A}^{@}$. Tetrahedron, 1999, 55, 11119-11126.	1.0	36
49	Rationalization of an Unusual Solventâ€Induced Inversion of Enantiomeric Excess in Organocatalytic Selenylation of Aldehydes. Angewandte Chemie - International Edition, 2014, 53, 8700-8704.	7.2	35
50	Oxaziridine-Mediated Amination of Branched Allylic Sulfides:  Stereospecific Formation of Allylic Amine Derivatives via [2,3]-Sigmatropic Rearrangement. Journal of Organic Chemistry, 2006, 71, 4028-4030.	1.7	34
51	Mechanistic Studies on the Copper-Catalyzed N-Arylation of Alkylamines Promoted by Organic Soluble Ionic Bases. ACS Catalysis, 2016, 6, 3965-3974.	5.5	34
52	Efficient nitrogen transfer from aldehyde-derived N-acyloxaziridines. Tetrahedron Letters, 2003, 44, 5335-5338.	0.7	33
53	Kinetic Profiling of Prolinate-Catalyzed α-Amination of Aldehydes. Organic Letters, 2011, 13, 4300-4303.	2.4	32
54	Enantioselective Synthesis of \hat{l} ±-Alkyl, \hat{l} ±-Vinyl Amino Acids via [2,3]-Sigmatropic Rearrangement of Selenimides. Organic Letters, 2011, 13, 1040-1043.	2.4	32

#	Article	IF	Citations
55	Synthesis of the Bicyclo [4.4.1] decenone Core of CP-225,917 and CP-263,114. Synlett, 1998, 1998, 552-553.	1.0	31
56	Electrophilic amination of carbanions by N-carboxamido oxaziridines. Tetrahedron Letters, 2000, 41, 2247-2251.	0.7	31
57	A one-step synthesis of tetrahydropyranopyranones from carbonyl compounds. Tetrahedron Letters, 2001, 42, 4585-4587.	0.7	31
58	Diastereoselective Conjugate Addition of Cyanide to $\hat{l}\pm,\hat{l}^2$ -Unsaturated ÂOxazolidinones: Enantioselective Synthesis of ent-Pregabalin and Baclofen. Synlett, 2006, 2006, 1589-1591.	1.0	31
59	Amine-Promoted Synthesis of Vinyl Aziridines. Journal of Organic Chemistry, 2010, 75, 3499-3502.	1.7	30
60	A new class of chiral tetrahydropyran-4-one catalyst for asymmetric epoxidation of alkenes. Tetrahedron, 2006, 62, 257-263.	1.0	27
61	Synthesis, Characterisation and Reactivity of Copper(I) Amide Complexes and Studies on Their Role in the Modified Ullmann Amination Reaction. Chemistry - A European Journal, 2015, 21, 7179-7192.	1.7	27
62	Amination and [2,3]-sigmatropic rearrangement of propargylic sulfides using a ketomalonate-derived oxaziridine: synthesis of N-allenylsulfenimides. Organic and Biomolecular Chemistry, 2003, 1, 3142.	1.5	26
63	Synthetic studies on CP-225,917 and CP-263,114: concise synthesis of the bicyclic core using an intramolecular Mukaiyama aldol reactionElectronic supplementary information (ESI) available: crystal data for 13a. See http://www.rsc.org/suppdata/p1/b2/b202752f/. Journal of the Chemical Society, Perkin Transactions 1, 2002. , 1344-1350.	1.3	24
64	Electrophilic amination of enolates with oxaziridines: effects of oxaziridine structure and reaction conditions. Tetrahedron, 2005, 61, 8423-8442.	1.0	24
65	aza-Prins-pinacol Approach to 7-Azabicyclo[2.2.1]heptanes and Ring Expansion to [3.2.1]Tropanes. Organic Letters, 2005, 7, 1335-1338.	2.4	23
66	Bicyclo[3.2.1]octanone catalysts for asymmetric alkene epoxidation: the effect of disubstitution. Tetrahedron, 2006, 62, 6614-6620.	1.0	22
67	Highly stereoselective intramolecular epoxidation in unsaturated oxaziridines. Tetrahedron Letters, 1999, 40, 4453-4456.	0.7	21
68	Tertiary amine-promoted enone aziridination: investigations into factors influencing enantioselective induction. Tetrahedron: Asymmetry, 2014, 25, 74-86.	1.8	21
69	Total Synthesis of Avermectin B1a: Final Coupling Reactions and the Total Synthesis of Avermectin B1a Aglycone. Synlett, 1990, 1990, 328-330.	1.0	20
70	Organocatalytic Synthesis of \hat{l}^2 -Alkylaspartates via \hat{l}^2 -Lactone Ring Opening. Journal of Organic Chemistry, 2007, 72, 8091-8094.	1.7	20
71	Catalytic enantioselective alkene epoxidation using novel spirocyclic N-carbethoxy-azabicyclo[3.2.1]octanones. Tetrahedron, 2010, 66, 6309-6320.	1.0	20
72	Total synthesis of (+)-milbemycin \hat{l}^21 . Tetrahedron Letters, 1989, 30, 3209-3212.	0.7	19

#	Article	IF	Citations
73	Total Synthesis of Avermectin B1a: Planning of the Synthesis and Preparation of the C1-C10 "Southern" Hydrobenzofuran Fragment. Synlett, 1990, 1990, 323-325.	1.0	19
74	N-Amino-N-methylmorpholinium Salts: Highly Active Aziridination Reagents for Chalcones. Synlett, 2006, 2006, 2504-2506.	1.0	18
75	Efficient and Facile Synthesis of Acrylamide Libraries for Protein-Guided Tethering. Organic Letters, 2015, 17, 458-460.	2.4	17
76	Intramolecular epoxidation in unsaturated ketones and oxaziridines. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2861-2873.	1.3	16
77	Synthesis of the C1-side chain of zaragozic acid D and progress towards a total synthesis. Tetrahedron, 2003, 59, 367-375.	1.0	16
78	Strategies for the Design of Organic Aziridination Reagents and Catalysts: Â Transition Structures for Alkene Aziridinations by NH Transfer. Journal of Organic Chemistry, 2003, 68, 6497-6501.	1.7	16
79	Oxidative rearrangement of 2-alkoxy-3,4-dihydro-2H-pyrans: stereocontrolled synthesis of 4,5-cis-disubstituted tetrahydrofuranones including whisky and cognac lactones and crobarbatic acid. Tetrahedron, 2009, 65, 4490-4504.	1.0	16
80	Synthesis and Configurational Assignment of Vinyl Sulfoximines and Sulfonimidamides. Journal of Organic Chemistry, 2021, 86, 7403-7424.	1.7	16
81	Asymmetric electrophilic amination of enolates by a chiral N-alkoxycarbonyloxaziridine. Tetrahedron: Asymmetry, 2001, 12, 535-538.	1.8	14
82	Synthesis and ring openings of cinnamate-derived N-unfunctionalised aziridines. Beilstein Journal of Organic Chemistry, 2012, 8, 1747-1752.	1.3	14
83	Tertiary Amine Promoted Aziridination: Preparation of NH-Aziridines from Aliphatic $\hat{l}\pm,\hat{l}^2$ -Unsaturated Ketones. Synlett, 2015, 27, 151-155.	1.0	14
84	Intramolecular Epoxidation of Unsaturated Oxaziridines. Synlett, 1998, 1998, 646-648.	1.0	13
85	Oxidative rearrangement of 2-alkoxy-3,4-dihydro-2H-pyrans: stereocontrolled synthesis of 4,5-cis-disubstituted tetrahydrofuranones. Tetrahedron Letters, 2006, 47, 1617-1619.	0.7	13
86	Multiparameter Kinetic Analysis for Covalent Fragment Optimization by Using Quantitative Irreversible Tethering (qIT). ChemBioChem, 2020, 21, 3417-3422.	1.3	13
87	[2,3]-Sigmatropic Rearrangement of Allylic Selenimides: Strategy for the Synthesis of Peptides, Peptidomimetics, and N-Aryl Vinyl Glycines. Journal of Organic Chemistry, 2014, 79, 3895-3907.	1.7	12
88	Aminative rearrangement of 2-alkoxy-3,4-dihydro-2H-pyrans: a novel stereocontrolled route to substituted pyrrolidinesElectronic supplementary information (ESI) available: experimental details and characterisation data for all new compounds. See http://www.rsc.org/suppdata/cc/b3/b316554j/. Chemical Communications, 2004, , 812.	2.2	11
89	Heteroatom transfer to alkenes by N-protected-oxaziridines: new reaction pathways and products. Tetrahedron Letters, 2005, 46, 2207-2210.	0.7	11
90	Enantioselective Synthesis of \hat{l}_{\pm} -Aminophosphonates via Organocatalytic Sulfenylation and [2,3]-Sigmatropic Sulfimide Rearrangement. Synlett, 2011, 2011, 2347-2350.	1.0	11

#	Article	IF	Citations
91	The interplay of thermodynamics and kinetics in dictating organocatalytic reactivity and selectivity. Pure and Applied Chemistry, 2013, 85, 1919-1934.	0.9	11
92	Mechanism, kinetics and selectivity of a Williamson ether synthesis: elucidation under different reaction conditions. Reaction Chemistry and Engineering, 2021, 6, 1195-1211.	1.9	10
93	Evaluation of asymmetric Diels–Alder approaches for the synthesis of the cyclohexene subunit of CP-225,917 and CP-263,114. Tetrahedron Letters, 2003, 44, 3915-3918.	0.7	9
94	Oxidation Reactions., 0,, 403-424.		7
95	Prospective use of molecular field points in ligand-based virtual screening: efficient identification of new reversible Cdc25 inhibitors. MedChemComm, 2013, 4, 1148.	3.5	7
96	A genetically-encoded crosslinker screen identifies SERBP1 as a PKClμ substrate influencing translation and cell division. Nature Communications, 2021, 12, 6934.	5.8	7
97	Identification of the first structurally validated covalent ligands of the small GTPase RAB27A. RSC Medicinal Chemistry, 2022, 13, 150-155.	1.7	7
98	Approaches to the \hat{I}^3 -lactone unit of CP-225,917 and CP-263,114. Tetrahedron Letters, 2002, 43, 6027-6030.	0.7	6
99	Vinyl sulfonamide synthesis for irreversible tethering via a novel α-selenoether protection strategy. MedChemComm, 2019, 10, 158-163.	3.5	6
100	Furanose Synthesis via Regioselective Dihydroxylation of 1-Silyloxy-1,3-dienes: Application to the Furanose Unit of 4-epi-Hygromycin A. Synlett, 2004, 2004, 0350-0352.	1.0	5
101	Highâ€Throughput Kinetic Analysis for Targetâ€Directed Covalent Ligand Discovery. Angewandte Chemie, 2018, 130, 5355-5359.	1.6	5
102	$2\hat{a}$ € $f\hat{a}$ € f	0.8	4
103	Synthetic methods: Part (ii) Oxidation and reduction methods. Annual Reports on the Progress of Chemistry Section B, 2006, 102, 34.	0.8	4
104	Multi-Objective Computer-Aided Solvent Design for Selectivity and Rate in Reactions. Computer Aided Chemical Engineering, 2018, , 2437-2442.	0.3	4
105	Acrylamide fragment inhibitors that induce unprecedented conformational distortions in enterovirus 71 3C and SARS-CoV-2 main protease. Acta Pharmaceutica Sinica B, 2022, 12, 3924-3933.	5.7	4
106	3 Synthetic methods: Part (ii) Oxidation and reduction methods. Annual Reports on the Progress of Chemistry Section B, 2004, 100, 51.	0.8	3
107	2ÂÂSynthetic methods: Part (ii) Oxidation and reduction methods. Annual Reports on the Progress of Chemistry Section B, 2005, 101, 33.	0.8	3
108	Co-ordinated control of the Aurora B abscission checkpoint by PKCε complex assembly, midbody recruitment and retention. Biochemical Journal, 2021, 478, 2247-2263.	1.7	3

#	Article	IF	CITATIONS
109	The Champagne Route to Avermectins and Milbemycins. Strategies and Tactics in Organic Synthesis, 1991, , 237-293.	0.1	1
110	Aminative Rearrangement of 2-Alkoxy-3,4-dihydro-2H-pyrans: A Novel Stereocontrolled Route to Substituted Pyrrolidines ChemInform, 2004, 35, no.	0.1	1
111	Recent Synthetic Studies on the Zaragozic Acids (Squalestatins). ChemInform, 2003, 34, no.	0.1	0
112	Efficient Nitrogen Transfer from Aldehyde-Derived N-Acyloxaziridines ChemInform, 2003, 34, no.	0.1	0
113	Amination and [2,3]-Sigmatropic Rearrangement of Propargylic Sulfides Using a Ketomalonate-Derived Oxaziridine: Synthesis of N-Allenylsulfenimides ChemInform, 2004, 35, no.	0.1	0
114	Amine-Catalyzed Epoxidation of Alkenes: A New Mechanism for the Activation of Oxone. ChemInform, 2004, 35, no.	0.1	0
115	New Methods and Synthetic Applications of Asymmetric Nitrogen Transfer. Chinese Journal of Chemistry, 2005, 23, 1270-1272.	2.6	0
116	Oxaziridine-Mediated Amination of Primary Amines: Scope and Application to a One-Pot Pyrazole Synthesis ChemInform, 2005, 36, no.	0.1	0
117	Heteroatom Transfer to Alkenes by N-Protected-oxaziridines: New Reaction Pathways and Products ChemInform, 2005, 36, no.	0.1	0
118	Aza-Prins-pinacol Approach to 7-Azabicyclo [2.2.1] heptanes and Ring Expansion to [3.2.1] Tropanes ChemInform, 2005, 36, no.	0.1	0
119	Hydroxylation, Epoxidation and Related Reactions. , 2007, , 193-254.		0
120	Quantitative Irreversible Tethering (qIT) for Target-directed Covalent Fragment Screening. Bio-protocol, 2020, 10, e3855.	0.2	0