Myoung-Gyu Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/416323/publications.pdf

Version: 2024-02-01

175 papers 5,612 citations

39 h-index 64 g-index

178 all docs

178 docs citations

178 times ranked

2394 citing authors

#	Article	IF	Citations
1	Evaluation of adhesion strength for oxide scale grown on low carbon steel. Mechanics of Advanced Materials and Structures, 2023, 30, 2258-2268.	2.6	O
2	Quantitative Evaluation of Tool Wear in Cold Stamping of Ultra-High-Strength Steel Sheets. Metals and Materials International, 2023, 29, 327-342.	3.4	12
3	Hole Expansion Characteristics of W-Tempered 7075 Aluminum Alloy Sheet in Comparison with Peak Aged T6 Tempered Alloy Sheet. Metals and Materials International, 2023, 29, 157-167.	3.4	13
4	A dual-scale FE simulation of hole expansion test considering pre-damage from punching process. International Journal of Solids and Structures, 2022, 236-237, 111312.	2.7	1
5	Modeling crystal plasticity with an enhanced twinning–detwinning model to simulate cyclic behavior of AZ31B magnesium alloy at various temperatures. International Journal of Plasticity, 2022, 150, 103190.	8.8	20
6	Analysis of hydrogen trapping behaviour in plastically deformed quenching and partitioning steel in relation to microstructure evolution by phase transformation. Journal of Alloys and Compounds, 2022, 904, 164018.	5 . 5	15
7	Analyses of shearing mechanism during shear-cutting of 980ÂMPa dual-phase steel sheets using ductile fracture modeling and simulation. International Journal of Material Forming, 2022, 15, .	2.0	7
8	Numerical prediction of sheared edge profiles in sheet metal trimming using ductile fracture modeling. International Journal of Mechanical Sciences, 2022, 219, 107109.	6.7	24
9	A fully coupled crystal plasticity-cellular automata model for predicting thermomechanical response with dynamic recrystallization in AISI 304LN stainless steel. Mechanics of Materials, 2022, 167, 104248.	3.2	15
10	A probabilistic mean-field and microstructure based finite element modeling for predicting mechanical and ductile fracture behavior of the cast aluminum alloy. International Journal of Plasticity, 2022, 154, 103299.	8.8	17
11	Experimental characterization and modeling of complex anisotropic hardening in quenching and partitioning (Q&P) steel subject to biaxial non-proportional loadings. International Journal of Plasticity, 2022, 156, 103347.	8.8	27
12	Recent Developments and Trends in Flexible Forming Technology. International Journal of Automotive Technology, 2022, 23, 741-763.	1.4	5
13	Efficient Wear Simulation Methodology for Predicting Nonlinear Wear Behavior of Tools in Sheet Metal Forming. Materials, 2022, 15, 4509.	2.9	6
14	Tensile behavior of single-crystal superalloy with different structured cooling holes. International Journal of Mechanical Sciences, 2022, 229, 107514.	6.7	15
15	Identification of strain localization-induced failure in hot-rolled steel sheets: A hybrid numerical–experimental approach to the virtual forming limit test. International Journal of Mechanical Sciences, 2021, 193, 106146.	6.7	4
16	Probing the Mechanism of Friction Stir Welding with ALE Based Finite Element Simulations and Its Application to Strength Prediction of Welded Aluminum. Metals and Materials International, 2021, 27, 650-666.	3.4	14
17	Predictive dual-scale finite element simulation for hole expansion failure of ferrite-bainite steel. International Journal of Plasticity, 2021, 136, 102900.	8.8	25
18	Tailored Graphene Micropatterns by Waferâ€Scale Direct Transfer for Flexible Chemical Sensor Platform. Advanced Materials, 2021, 33, e2004827.	21.0	40

#	Article	IF	CITATIONS
19	Mechanical properties of solution heat treated Al-Zn-Mg-Cu (7075) alloy under different cooling conditions: Analysis with full field measurement and finite element modeling. Journal of Alloys and Compounds, 2021, 856, 158180.	5.5	32
20	Numerically Efficient Sheet Metal Forming Simulations in Consideration of Tool Deformation. International Journal of Automotive Technology, 2021, 22, 69-79.	1.4	4
21	Artificial Neural Network for Modeling the Tensile Properties of Ferrite-Pearlite Steels: Relative Importance of Alloying Elements and Microstructural Factors. Metals and Materials International, 2021, 27, 3935-3944.	3.4	12
22	Tool Wear Prediction in the Forming of Automotive DP980 Steel Sheet Using Statistical Sensitivity Analysis and Accelerated U-Bending Based Wear Test. Metals, 2021, 11, 306.	2.3	9
23	New procedure for determining the strain hardening behavior of sheet metals at large strains using the curve fitting method. Mechanics of Materials, 2021, 154, 103729.	3.2	14
24	Investigation of the unloading yield effect in 7075 Al alloys based on microstructural and digital image correlation analysis. Materials Characterization, 2021, 173, 110963.	4.4	6
25	Predictive integrated numerical approach for modeling spatio-temporal microstructure evolutions and grain size dependent phase transformations in steels. International Journal of Plasticity, 2021, 139, 102952.	8.8	11
26	Fully Implicit Stress Update Algorithm for Distortion-Based Anisotropic Hardening with Cross-Loading Effect: Comparative Algorithmic Study and Application to Large-Size Forming Problem. Applied Sciences (Switzerland), 2021, 11, 5509.	2.5	5
27	Development of analytical strength estimator for self-piercing rivet joints through observation of finite element simulations. International Journal of Mechanical Sciences, 2021, 202-203, 106499.	6.7	13
28	Theoretical analysis, finite element modelling, and experimental investigation of manufacturing convoluted spiral tubes through free bending forming technology. International Journal of Advanced Manufacturing Technology, 2021, 117, 279-293.	3.0	4
29	Prediction of anisotropic strengths of steel plate after prior bending-reverse bending deformation: Application of distortional hardening model. International Journal of Mechanical Sciences, 2021, 204, 106512.	6.7	6
30	Effect of plastic anisotropy and Portevin-Le Chatelier bands on hole-expansion in AA7075 sheets in -T6 and -W tempers. Journal of Materials Processing Technology, 2021, 296, 117211.	6.3	20
31	Observation of Portevin-le Chatelier effect in aluminum alloy 7075-w under a heterogeneous stress field. Scripta Materialia, 2021, 205, 114178.	5. 2	11
32	Return mapping with a line search method for integrating stress of the distortional hardening law with differential softening. Computers and Structures, 2021, 257, 106652.	4.4	10
33	Finite element-based virtual fields method with pseudo-real deformation fields for identifying constitutive parameters. International Journal of Solids and Structures, 2021, 233, 111204.	2.7	21
34	A Review on Friction and Lubrication in Automotive Metal Forming: Experiment and Modeling. International Journal of Automotive Technology, 2021, 22, 1743-1761.	1.4	11
35	Mechanical Properties and Formability of Heat-Treated 7000-Series High-Strength Aluminum Alloy: Experiments and Finite Element Modeling. Metals and Materials International, 2020, 26, 682-694.	3.4	26
36	Analysis of friction behaviour under oscillating forming process using T-shape compression test and finite element simulation. Journal of Materials Processing Technology, 2020, 275, 116327.	6.3	5

#	Article	lF	CITATIONS
37	Predicting forming limit diagrams for magnesium alloys using crystal plasticity finite elements. International Journal of Plasticity, 2020, 126, 102630.	8.8	36
38	Mechanical properties, springback, and formability of W-temper and peak aged 7075 aluminum alloy sheets: Experiments and modeling. International Journal of Mechanical Sciences, 2020, 170, 105344.	6.7	67
39	Influence of Evolution in Anisotropy During Strain Path Change on Failure Limits of Sheet Metals. Metals and Materials International, 2020, 27, 3225.	3.4	7
40	A virtual fields method for identifying anisotropic elastic constants of fiber reinforced composites using a single tension test: Theory and validation. Composites Part B: Engineering, 2020, 200, 108338.	12.0	19
41	Modeling differential permanent softening under strain-path changes in sheet metals using a modified distortional hardening model. International Journal of Plasticity, 2020, 133, 102789.	8.8	19
42	A multiplicative plastic hardening model in consideration of strain softening and strain rate: Theoretical derivation and characterization of model parameters with simple tension and creep test. International Journal of Mechanical Sciences, 2020, 187, 105913.	6.7	11
43	Formability and fracture in deep drawing sheet metals: Extended studies for pre-strained anisotropic thin sheets. International Journal of Mechanical Sciences, 2020, 170, 105346.	6.7	33
44	Measurement of Weld Zone Properties of Laser-Welded Tailor-Welded Blanks and Its Application to Deep Drawing. International Journal of Automotive Technology, 2020, 21, 615-622.	1.4	9
45	Modelling continuous dynamic recrystallization of aluminum alloys based on the polycrystal plasticity approach. International Journal of Plasticity, 2020, 131, 102710.	8.8	41
46	Study on Plastic Response Under Biaxial Tension and Its Correlation with Formability for Wrought Magnesium Alloys. Jom, 2020, 72, 2568-2577.	1.9	7
47	Computational wrapping: A universal method to wrap 3D-curved surfaces with nonstretchable materials for conformal devices. Science Advances, 2020, 6, eaax6212.	10.3	39
48	Numerical modeling for accurate prediction of strain localization in hole expansion of a steel sheet. International Journal of Solids and Structures, 2019, 156-157, 107-118.	2.7	31
49	Improved formability prediction by modeling evolution of anisotropy of steel sheets. International Journal of Solids and Structures, 2019, 156-157, 263-280.	2.7	16
50	Equal channel angular bending as a new severe plastic deformation process: Application to thin Mg-3Al-1Zn sheet. Materials Letters, 2019, 255, 126514.	2.6	6
51	Effect of shear deformation on plasticity, recrystallization mechanism and texture evolution of Mg \hat{a} e"3Al \hat{a} e"1Zn alloy sheet: Experiment and coupled finite element-VPSC simulation. Journal of Alloys and Compounds, 2019, 805, 138-152.	5. 5	33
52	Characterization of Plastic Deformation in Lath Martensitic Steel by Micro-pillar Compression Focused on Sub-block and Lath Boundaries. Jom, 2019, 71, 3536-3542.	1.9	1
53	Application of Combined W-Temper and Cold Forming Technology to High-Strength Aluminum Alloy Automotive Parts. Jom, 2019, 71, 4393-4404.	1.9	18
54	Effect of Anisotropic Plasticity on the Prediction of Formability of E-Form Magnesium Alloy Sheet. International Journal of Automotive Technology, 2019, 20, 1183-1193.	1.4	7

#	Article	IF	CITATIONS
55	Pulsed Electric Current V-Bending Springback of AZ31B Magnesium Alloy Sheets. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 2720-2731.	2.2	17
56	Determining the coefficients of a homogeneous anisotropic hardening model for ultrathin steel sheets. International Journal of Mechanical Sciences, 2019, 157-158, 428-438.	6.7	23
57	Extremely Versatile Deformability beyond Materiality: A New Material Platform through Simple Cutting for Rugged Batteries. Advanced Engineering Materials, 2019, 21, 1900206.	3.5	15
58	Identification of mechanical responses of steel sheets under non-proportional loadings using dislocation-density based crystal plasticity model. International Journal of Mechanical Sciences, 2019, 155, 461-474.	6.7	19
59	Meso-scale modeling and simulation for reduced activation ferritic/martensitic steel. Fusion Engineering and Design, 2019, 146, 232-235.	1.9	1
60	Practical microstructure-informed dual-scale simulation for predicting hole expansion failure of hyper-burring steel. International Journal of Mechanical Sciences, 2019, 156, 297-311.	6.7	14
61	An effective Schmid factor in consideration of combined normal and shear stresses for slip/twin variant selection of Mg-3Al-1Zn alloy. Scripta Materialia, 2019, 167, 51-55.	5.2	42
62	Advanced constitutive model for repeated stress relaxation accounting for transient mobile dislocation density and internal stress. Mechanics of Materials, 2019, 133, 138-153.	3.2	27
63	A polycrystal plasticity based thermo-mechanical-dynamic recrystallization coupled modeling method and its application to light weight alloys. International Journal of Plasticity, 2019, 116, 159-191.	8.8	39
64	Modeling and experiment on microstructure evolutions and mechanical properties in grade 600'MPa reinforcing steel rebar subjected to TempCore process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 39-52.	5 . 6	25
65	Identification of Dynamic Flow Stress Curves Using the Virtual Fields Methods: Theoretical Feasibility Analysis. Metals and Materials International, 2018, 24, 351-361.	3.4	8
66	Split-Ring Springback Simulations with the Non-associated Flow Rule and Evolutionary Elastic-Plasticity Models. Jom, 2018, 70, 906-911.	1.9	2
67	Fracture prediction based on a two-surface plasticity law for the anisotropic magnesium alloys AZ31 and ZE10. International Journal of Plasticity, 2018, 105, 1-23.	8.8	30
68	Analysis of real contact area and re-lubrication in oscillating bulk forming process by corrosion method. Journal of Materials Processing Technology, 2018, 253, 178-194.	6.3	10
69	Advanced constitutive modeling of advanced high strength steel sheets for springback prediction after double stage U-draw bending. International Journal of Solids and Structures, 2018, 151, 152-164.	2.7	46
70	A Coupled Crystal Plasticity and Anisotropic Yield Function Model to Identify the Anisotropic Plastic Properties and Friction Behavior of an AA 3003 Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 282-294.	2.2	10
71	Effect of deformation induced nonlinear and anisotropic elasto-plasticity on sheet forming simulations. Journal of Physics: Conference Series, 2018, 1063, 012029.	0.4	0
72	Experimental and finite element analysis on oscillating cold forming in consideration of nonlinear loading-unloading-reloading behavior. Journal of Manufacturing Processes, 2018, 36, 520-534.	5.9	8

#	Article	IF	CITATIONS
73	Basics of Continuum Plasticity. , 2018, , .		6
74	Robust multi objective optimization of anisotropic yield function coefficients. Materials and Design, 2018, 156, 184-197.	7.0	10
75	Advances in Plastic Forming of Metals. Metals, 2018, 8, 272.	2.3	4
76	Grain Scale Representative Volume Element Simulation to Investigate the Effect of Crystal Orientation on Void Growth in Single and Multi-Crystals. Metals, 2018, 8, 436.	2.3	8
77	Influence of dynamic loading on failure behavior of spot welded automotive steel sheets. International Journal of Mechanical Sciences, 2018, 144, 407-426.	6.7	19
78	Influence of Yield Stress Determination in Anisotropic Hardening Model on Springback Prediction in Dual-Phase Steel. Jom, 2018, 70, 1560-1566.	1.9	7
79	Piecewise linear approximation of nonlinear unloading-reloading behaviors using a multi-surface approach. International Journal of Plasticity, 2017, 93, 112-136.	8.8	42
80	Investigation of plastic strain rate under strain path changes in dual-phase steel using microstructure-based modeling. International Journal of Plasticity, 2017, 93, 89-111.	8.8	37
81	Distortional hardening concept for modeling anisotropic/asymmetric plastic behavior of AZ31B magnesium alloy sheets. International Journal of Plasticity, 2017, 94, 74-97.	8.8	42
82	Crystal plasticity finite element analysis of ferritic stainless steel for sheet formability prediction. International Journal of Plasticity, 2017, 93, 26-45.	8.8	41
83	Formability evaluation for hot-rolled HB780 steel sheet based on 3-D non-quadratic yield function. Metals and Materials International, 2017, 23, 519-531.	3.4	3
84	An RVE procedure for micromechanical prediction of mechanical behavior of dual-phase steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 695, 101-111.	5 . 6	40
85	Electroplastic behaviour in an aluminium alloy and dislocation density based modelling. Materials and Design, 2017, 124, 131-142.	7.0	77
86	Constitutive modeling for path-dependent behavior and its influence on twist springback. International Journal of Plasticity, 2017, 93, 64-88.	8.8	45
87	Formability assessment and failure prediction of laser welded dual phase steel blanks using anisotropic plastic properties. International Journal of Mechanical Sciences, 2017, 126, 203-221.	6.7	33
88	Simple and effective failure analysis of dissimilar resistance spot welded advanced high strength steel sheets. International Journal of Mechanical Sciences, 2017, 121, 76-89.	6.7	27
89	Two-stage forming approach for manufacturing ferritic stainless steel bipolar plates in PEM fuel cell: Experiments and numerical simulations. International Journal of Hydrogen Energy, 2017, 42, 6965-6977.	7.1	48
90	Failure prediction of AZ31B magnesium alloy sheet based on a micro-mechanical void model incorporating the asymmetric plasticity constitutive law. International Journal of Plasticity, 2017, 94, 98-121.	8.8	17

#	Article	IF	CITATIONS
91	Practical failure analysis of resistance spot welded advanced high-strength steel sheets. International Journal of Plasticity, 2017, 94, 122-147.	8.8	29
92	Electric current–assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension. International Journal of Plasticity, 2017, 94, 148-170.	8.8	106
93	Anisotropic Hardening Behaviour and Springback of Advanced High-Strength Steels. Metals, 2017, 7, 480.	2.3	24
94	Evolutionary anisotropy and flow stress in advanced high strength steels under loading path changes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 672, 65-77.	5.6	29
95	Thermal effects on the enhanced ductility in non-monotonic uniaxial tension of DP780 steel sheet. Metals and Materials International, 2016, 22, 968-973.	3.4	12
96	Electrically assisted tensile behavior of complex phase ultra-high strength steel. International Journal of Precision Engineering and Manufacturing - Green Technology, 2016, 3, 325-333.	4.9	13
97	Prediction of part shape and associated material properties in hot-press forming using Unite element analysis. Journal of Physics: Conference Series, 2016, 734, 032024.	0.4	0
98	Transformation kinetics and density models of quenching and partitioning (Q&P) steels. Acta Materialia, 2016, 109, 394-404.	7.9	32
99	Experimental and Numerical Study on the Deformation Mechanism in AZ31B Mg Alloy Sheets Under Pulsed Electric-Assisted Tensile and Compressive Tests. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2783-2794.	2.2	21
100	Effect of nonlinear multi-axial elasticity and anisotropic plasticity on quasi-static dent properties of automotive steel sheets. International Journal of Solids and Structures, 2016, 87, 254-266.	2.7	21
101	Application of central composite design for optimization of two-stage forming process using ultra-thin ferritic stainless steel. Metals and Materials International, 2016, 22, 276-287.	3.4	14
102	Spallation analysis of oxide scale on low carbon steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 676, 385-394.	5.6	8
103	Thermomechanical response of a TWIP steel during monotonic and non-monotonic uniaxial loading. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2016, 674, 276-285.	5.6	19
104	Multiscale Analysis of Open-Cell Aluminum Foam for Impact Energy Absorption. Journal of Materials Engineering and Performance, 2016, 25, 3977-3984.	2.5	8
105	Probing Formability Improvement of Ultra-thin Ferritic Stainless Steel Bipolar Plate of PEMFC in Non-conventional Forming Process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4160-4174.	2.2	16
106	Advanced constitutive modeling of AHSS sheets forapplication to springback prediction after U-draw double stamping process. Journal of Physics: Conference Series, 2016, 734, 032029.	0.4	1
107	Evaluation of Springback for DP980 S Rail Using Anisotropic Hardening Models. Jom, 2016, 68, 1850-1857.	1.9	26
108	Effect of slide motion on springback in 2-D draw bending for AHSS. International Journal of Material Forming, 2016, 9, 313-326.	2.0	8

#	Article	IF	CITATIONS
109	Constitutive modelling of high strength titanium alloy Ti-6Al- $4\hat{A}V$ for sheet forming applications at room temperature. International Journal of Solids and Structures, 2016, 80, 334-347.	2.7	30
110	Modeling and Characterization of Texture Evolution in Twist Extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 1248-1260.	2.2	17
111	Enhancement in the Modeling of Temperature and Strain Rateâ€Dependent Plastic Hardening Behavior of a Sheet Metal. Steel Research International, 2015, 86, 902-914.	1.8	2
112	Springback Reduction in Tailor Welded Blank with High Strength Differential by Using Multi-Objective Evolutionary and Genetic Algorithms. Steel Research International, 2015, 86, 1391-1402.	1.8	13
113	Bending Formability of Ferritic Stainless Steels for Application to Tubular Exhaust Manifolds. ISIJ International, 2015, 55, 1048-1057.	1.4	3
114	Simple shear model of twist extrusion and its deviations. Metals and Materials International, 2015, 21, 569-579.	3.4	22
115	Constitutive and friction modeling for accurate springback analysis of advanced high strength steel sheets. International Journal of Plasticity, 2015, 71, 113-135.	8.8	66
116	Hydroformability assessment of AA6063 tubes using the polar effective plastic strain diagram. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229, 647-653.	2.4	9
117	Experimental and numerical analysis of a rectangular helical coil actuator for electromagnetic bulging. International Journal of Advanced Manufacturing Technology, 2015, 78, 825-839.	3.0	20
118	Evaluation of biaxial flow stress based on elasto-viscoplastic self-consistent analysis of X-ray diffraction measurements. International Journal of Plasticity, 2015, 66, 103-118.	8.8	26
119	Observations on the Nonlinear Unloading Behavior of Advanced High Strength Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 18-22.	2.2	28
120	Evaluation of stress integration algorithms for elastic–plastic constitutive models based on associated and non-associated flow rules. Computer Methods in Applied Mechanics and Engineering, 2015, 295, 414-445.	6.6	40
121	Experiment and modeling to investigate the effect of stress state, strain and temperature on martensitic phase transformation in TRIP-assisted steel. Acta Materialia, 2015, 97, 435-444.	7.9	85
122	Modeling of forming limit for multilayer sheets based on strain-rate potentials. International Journal of Plasticity, 2015, 75, 63-99.	8.8	17
123	Cyclic behavior of AZ31BÂMg: Experiments and non-isothermal forming simulations. International Journal of Plasticity, 2015, 75, 39-62.	8.8	24
124	Determination of Anisotropic Yield Coefficients by a Data-Driven Multiobjective Evolutionary and Genetic Algorithm. Materials and Manufacturing Processes, 2015, 30, 403-413.	4.7	19
125	Formability of AHSS under an Attach–Detach Forming Mode. Steel Research International, 2015, 86, 98-109.	1.8	12
126	Decoupling Thermal and Electrical Effect in an Electrically Assisted Uniaxial Tensile Test Using Finite Element Analysis. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3043-3051.	2.2	48

#	Article	IF	CITATIONS
127	Recent developments in hydroforming technology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229, 572-596.	2.4	32
128	Experimental study on forming behavior of high-strength steel sheets under electromagnetic pressure. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229, 670-681.	2.4	6
129	Numerical Analysis on Electromagnetic Forming of Automotive Sheets with Flat Spiral Coil., 2014, , .		1
130	Design of high strength differential TWB to enhance drawability: FE study and optimization. International Journal of Precision Engineering and Manufacturing, 2014, 15, 2273-2283.	2.2	4
131	Mechanical Behavior of AZ31B Mg Alloy Sheets under Monotonic and Cyclic Loadings at Room and Moderately Elevated Temperatures. Materials, 2014, 7, 1271-1295.	2.9	65
132	Frictional Behaviors of a Mild Steel and a TRIP780 Steel Under a Wide Range of Contact Stress and Sliding Speed. Journal of Tribology, 2014, 136, .	1.9	24
133	Modeling Mechanical Properties of 21-Cr Ferritic Stainless Steel with Variation of Stress Ratio. Procedia Engineering, 2014, 81, 2439-2444.	1.2	0
134	Mesoâ€Scopic Analysis of Strain Path Change Effect on the Hardening Behavior of Dualâ€Phase Steel. Steel Research International, 2014, 85, 1047-1057.	1.8	11
135	Multiâ€Objective Genetic Algorithm to Optimize Variable Drawbead Geometry for Tailor Welded Blanks Made of Dissimilar Steels. Steel Research International, 2014, 85, 1597-1607.	1.8	20
136	Continuous strain path change simulations for sheet metal. Computational Materials Science, 2014, 82, 286-292.	3.0	18
137	Measurement of the Bauschinger behavior of sheet metals by three-point bending springback test with pre-strained strips. International Journal of Plasticity, 2014, 59, 84-107.	8.8	61
138	Phase transformation-based finite element modeling to predict strength and deformation of press-hardened tubular automotive part. International Journal of Advanced Manufacturing Technology, 2014, 70, 1787-1801.	3.0	29
139	A pragmatic approach to accommodate in-plane anisotropy in forming limit diagrams. Mechanics Research Communications, 2014, 62, 5-17.	1.8	10
140	On twist springback prediction of asymmetric tube in rotary draw bending with different constitutive models. International Journal of Mechanical Sciences, 2014, 89, 311-322.	6.7	31
141	A Novel Multi-objective Genetic Algorithms-Based Calculation of Hill's Coefficients. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2704-2707.	2.2	16
142	In situ monitoring of structural changes in nonwoven mats under tensile loading using X-ray computer tomography. Composites Part A: Applied Science and Manufacturing, 2014, 63, 1-9.	7.6	21
143	An evolutionary anisotropic model for sheet metals based on non-associated flow rule approach. Computational Materials Science, 2014, 81, 15-29.	3.0	84
144	Thermo-mechanical-metallurgical modeling for hot-press forming in consideration of the prior austenite deformation effect. International Journal of Plasticity, 2014, 58, 154-183.	8.8	54

#	Article	IF	Citations
145	Extension of quasi-plastic–elastic approach to incorporate complex plastic flow behavior – application to springback of advanced high-strength steels. International Journal of Plasticity, 2013, 45, 140-159.	8.8	83
146	A temperature-dependent elasto-plastic constitutive model for magnesium alloy AZ31 sheets. International Journal of Plasticity, 2013, 50, 66-93.	8.8	77
147	Formability prediction of advanced high strength steels using constitutive models characterized by uniaxial and biaxial experiments. Journal of Materials Processing Technology, 2013, 213, 1929-1942.	6.3	61
148	Evaluating the significance of hardening behavior and unloading modulus under strain reversal in sheet springback prediction. International Journal of Mechanical Sciences, 2013, 77, 194-204.	6.7	57
149	Formability of austenitic and ferritic stainless steels at warm forming temperature. International Journal of Mechanical Sciences, 2013, 75, 94-109.	6.7	49
150	Advanced Issues in springback. International Journal of Plasticity, 2013, 45, 3-20.	8.8	275
151	Nonlinear elastic behaviors of low and high strength steels in unloading and reloading. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 562, 161-171.	5.6	81
152	Extension of homogeneous anisotropic hardening model to cross-loading with latent effects. International Journal of Plasticity, 2013, 46, 130-142.	8.8	170
153	Strain hardening response and modeling of EDDQ and DP780 steel sheet under non-linear strain path. Mechanics of Materials, 2013, 64, 11-26.	3.2	83
154	Hot Press Forming of Tailor Welded Blank: Experiments and FE Modeling. ISIJ International, 2012, 52, 2059-2068.	1.4	25
155	An application of homogeneous anisotropic hardening to springback prediction in pre-strained U-draw/bending. International Journal of Solids and Structures, 2012, 49, 3562-3572.	2.7	96
156	The forming limit diagram of ferritic stainless steel sheets: Experiments and modeling. International Journal of Mechanical Sciences, 2012, 64, 1-10.	6.7	68
157	Stress integration schemes for novel homogeneous anisotropic hardening model. Computer Methods in Applied Mechanics and Engineering, 2012, 247-248, 73-92.	6.6	49
158	Twinning-Slip Transitions in Mg AZ31B. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3300-3313.	2.2	20
159	Finite element modeling using homogeneous anisotropic hardening and application to spring-back prediction. International Journal of Plasticity, 2012, 29, 13-41.	8.8	121
160	Hole expansion of twinning-induced plasticity steel. Scripta Materialia, 2012, 66, 1012-1017.	5.2	38
161	Crystal plasticity approach for predicting the Bauschinger effect in dual-phase steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 539, 259-270.	5.6	81
162	An alternative to kinematic hardening in classical plasticity. International Journal of Plasticity, 2011, 27, 1309-1327.	8.8	330

#	Article	IF	CITATIONS
163	Thermo-mechanical finite element analysis incorporating the temperature dependent stress-strain response of low alloy steel for practical application to the hot stamped part. Metals and Materials International, 2010, 16, 185-195.	3.4	49
164	Development of nonlinear constitutive laws for anisotropic and asymmetric fiber reinforced composites. Polymer Composites, 2008, 29, 216-228.	4.6	12
165	Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets. International Journal of Plasticity, 2008, 24, 545-582.	8.8	149
166	An elasto-plastic constitutive model with plastic strain rate potentials for anisotropic cubic metals. International Journal of Plasticity, 2008, 24, 2298-2334.	8.8	48
167	A practical two-surface plasticity model and its application to spring-back prediction. International Journal of Plasticity, 2007, 23, 1189-1212.	8.8	136
168	Texture evolution maps for upset deformation of body-centered cubic metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 463, 263-270.	5.6	16
169	Micromechanical modeling of fiber reinforced composites based on elastoplasticity and its application for 3D braided glass/Kevlar composites. Polymer Composites, 2007, 28, 722-732.	4.6	10
170	Anisotropic-asymmetric yield criterion and anisotropic hardening law for composite materials: Theory and formulations. Fibers and Polymers, 2006, 7, 42-50.	2.1	6
171	Numerical implementation of modified Coulomb-Mohr yield criterion for anisotropic and asymmetric materials. Fibers and Polymers, 2006, 7, 276-285.	2.1	4
172	Spring-back evaluation of automotive sheets based on isotropic–kinematic hardening laws and non-quadratic anisotropic yield functions, part III: applications. International Journal of Plasticity, 2005, 21, 915-953.	8.8	165
173	Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions. International Journal of Plasticity, 2005, 21, 861-882.	8.8	136
174	Measurements of anisotropic yielding, bauschinger and transient behavior of automotive dual-phase steel sheets. Metals and Materials International, 2003, 9, 561-570.	3.4	28
175	Integration algorithms for planar anisotropic shells with isotropic and kinematic hardening at finite strains. Communications in Numerical Methods in Engineering, 2003, 19, 473-490.	1.3	12