Jiong Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4162939/publications.pdf

Version: 2024-02-01

106 papers	9,409 citations	41258 49 h-index	95 g-index
115	115	115	14572
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano, 2009, 3, 2367-2375.	7.3	1,093
2	Transforming C60 molecules into graphene quantum dots. Nature Nanotechnology, 2011, 6, 247-252.	15.6	587
3	Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nature Communications, 2012, 3, 1298.	5.8	538
4	Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS Nano, 2011, 5, 9927-9933.	7.3	529
5	A Grapheneâ€Supported Singleâ€Atom FeN ₅ Catalytic Site for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 14871-14876.	7.2	410
6	Fluorinated Graphene for Promoting Neuroâ€Induction of Stem Cells. Advanced Materials, 2012, 24, 4285-4290.	11.1	315
7	Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nature Materials, 2018, 17, 908-914.	13.3	295
8	Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nature Nanotechnology, 2022, 17, 174-181.	15.6	279
9	Chemically Exfoliated VSe ₂ Monolayers with Roomâ€Temperature Ferromagnetism. Advanced Materials, 2019, 31, e1903779.	11.1	251
10	Design of Local Atomic Environments in Singleâ€Atom Electrocatalysts for Renewable Energy Conversions. Advanced Materials, 2021, 33, e2003075.	11.1	187
11	Atomically precise bottom-up synthesis of π-extended [5]triangulene. Science Advances, 2019, 5, eaav7717.	4.7	159
12	Transforming moiré blisters into geometric graphene nano-bubbles. Nature Communications, 2012, 3, 823.	5.8	157
13	Recent advances in Fe (or Co)/N/C electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells. Journal of Materials Chemistry A, 2017, 5, 18933-18950.	5.2	146
14	Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity. Nature Communications, 2018, 9, 3197.	5.8	146
15	Gate-Tunable Giant Stark Effect in Few-Layer Black Phosphorus. Nano Letters, 2017, 17, 1970-1977.	4.5	144
16	Order–disorder transition in a two-dimensional boron–carbon–nitride alloy. Nature Communications, 2013, 4, 2681.	5.8	138
17	Probing the Role of Interlayer Coupling and Coulomb Interactions on Electronic Structure in Few-Layer MoSe ₂ Nanostructures. Nano Letters, 2015, 15, 2594-2599.	4.5	136
18	Ultrafast Electrochemical Expansion of Black Phosphorus toward High-Yield Synthesis of Few-Layer Phosphorene. Chemistry of Materials, 2018, 30, 2742-2749.	3.2	132

#	Article	IF	Citations
19	Room temperature ferromagnetism in partially hydrogenated epitaxial graphene. Applied Physics Letters, 2011, 98, .	1.5	126
20	Engineering Local and Global Structures of Single Co Atoms for a Superior Oxygen Reduction Reaction. ACS Catalysis, 2020, 10, 5862-5870.	5.5	126
21	Plasmon dispersion on epitaxial graphene studied using high-resolution electron energy-loss spectroscopy. Physical Review B, 2009, 80, .	1.1	118
22	Tailoring sample-wide pseudo-magnetic fields on a graphene–black phosphorus heterostructure. Nature Nanotechnology, 2018, 13, 828-834.	15.6	113
23	Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nature Communications, 2020, 11, 4389.	5.8	110
24	Toward High Throughput Interconvertible Graphane-to-Graphene Growth and Patterning. ACS Nano, 2010, 4, 6146-6152.	7.3	109
25	Single-Atom Electrocatalysts for Lithium Sulfur Batteries: Progress, Opportunities, and Challenges. , 2020, 2, 1450-1463.		108
26	A Grapheneâ€Supported Singleâ€Atom FeN ₅ Catalytic Site for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie, 2019, 131, 15013-15018.	1.6	107
27	Printable two-dimensional superconducting monolayers. Nature Materials, 2021, 20, 181-187.	13.3	102
28	On-surface synthesis of graphene nanostructures with π-magnetism. Chemical Society Reviews, 2021, 50, 3238-3262.	18.7	102
29	Defects controlled hole doping and multivalley transport in SnSe single crystals. Nature Communications, 2018, 9, 47.	5.8	95
30	Engineering the Coordination Environment of Single Cobalt Atoms for Efficient Oxygen Reduction and Hydrogen Evolution Reactions. ACS Catalysis, 2021, 11, 4498-4509.	5.5	94
31	Tuning the Spin Density of Cobalt Single-Atom Catalysts for Efficient Oxygen Evolution. ACS Nano, 2021, 15, 7105-7113.	7.3	90
32	Step Flow Versus Mosaic Film Growth in Hexagonal Boron Nitride. Journal of the American Chemical Society, 2013, 135, 2368-2373.	6.6	89
33	Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters, 2014, 14, 5133-5139.	4.5	89
34	Ordered clustering of single atomic Te vacancies in atomically thin PtTe2 promotes hydrogen evolution catalysis. Nature Communications, 2021, 12, 2351.	5.8	83
35	Tuning charge and correlation effects for a single molecule on a graphene device. Nature Communications, 2016, 7, 13553.	5.8	82
36	Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor. Science Advances, 2019, 5, eaaw2347.	4.7	80

#	Article	IF	Citations
37	Multimaterial 3D-printing of graphene/Li0.35Zn0.3Fe2.35O4 and graphene/carbonyl iron composites with superior microwave absorption properties and adjustable bandwidth. Carbon, 2020, 167, 62-74.	5.4	78
38	Quasiâ€Monolayer Black Phosphorus with High Mobility and Air Stability. Advanced Materials, 2018, 30, 1704619.	11.1	76
39	Digital light processing 3D printing of graphene/carbonyl iron/polymethyl methacrylate nanocomposites for efficient microwave absorption. Composites Part B: Engineering, 2019, 179, 107533.	5.9	73
40	Periodic Grain Boundaries Formed by Thermal Reconstruction of Polycrystalline Graphene Film. Journal of the American Chemical Society, 2014, 136, 12041-12046.	6.6	63
41	Grapheneâ€Oxideâ€Catalyzed Direct CHâ^'CHâ€Type Crossâ€Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie - International Edition, 2018, 57, 10848-10853.	7.2	63
42	Giant Emission Enhancement of Solidâ€State Gold Nanoclusters by Surface Engineering. Angewandte Chemie - International Edition, 2020, 59, 8270-8276.	7.2	63
43	Highâ€Yield Electrochemical Production of Largeâ€Sized and Thinly Layered NiPS ₃ Flakes for Overall Water Splitting. Small, 2019, 15, e1902427.	5.2	62
44	Nanoscale Control of Rewriteable Doping Patterns in Pristine Graphene/Boron Nitride Heterostructures. Nano Letters, 2016, 16, 1620-1625.	4.5	60
45	Bottom-up growth of homogeneous Moir \tilde{A} © superlattices in bismuth oxychloride spiral nanosheets. Nature Communications, 2019, 10, 4472.	5.8	59
46	On-Surface Synthesis and Characterization of [7]Triangulene Quantum Ring. Nano Letters, 2021, 21, 861-867.	4.5	59
47	Oscillating edge states in one-dimensional MoS2 nanowires. Nature Communications, 2016, 7, 12904.	5.8	57
48	Zeroâ€Valent Palladium Singleâ€Atoms Catalysts Confined in Black Phosphorus for Efficient Semiâ€Hydrogenation. Advanced Materials, 2021, 33, e2008471.	11.1	55
49	Using the Graphene Moiré Pattern for the Trapping of C ₆₀ and Homoepitaxy of Graphene. ACS Nano, 2012, 6, 944-950.	7.3	54
50	Triangulenes: From Precursor Design to Onâ€Surface Synthesis and Characterization. Angewandte Chemie - International Edition, 2020, 59, 7658-7668.	7.2	53
51	Synthesis of Monolayer Blue Phosphorus Enabled by Silicon Intercalation. ACS Nano, 2020, 14, 3687-3695.	7.3	52
52	Properties of Strained Structures and Topological Defects in Graphene. ACS Nano, 2013, 7, 8350-8357.	7.3	49
53	From All-Triazine C ₃ N ₃ Framework to Nitrogen-Doped Carbon Nanotubes: Efficient and Durable Trifunctional Electrocatalysts. ACS Applied Nano Materials, 2019, 2, 7969-7977.	2.4	49
54	Roomâ€Temperature Ice Growth on Graphite Seeded by Nanoâ€Graphene Oxide. Angewandte Chemie - International Edition, 2013, 52, 8708-8712.	7.2	46

#	Article	IF	Citations
55	Molecular Self-Assembly in a Poorly Screened Environment: F ₄ TCNQ on Graphene/BN. ACS Nano, 2015, 9, 12168-12173.	7.3	45
56	Ultrahigh-yield on-surface synthesis and assembly of circumcoronene into a chiral electronic Kagome-honeycomb lattice. Science Advances, 2021, 7, .	4.7	43
57	Twisted-Angle-Dependent Optical Behaviors of Intralayer Excitons and Trions in WS ₂ /WSe ₂ Heterostructure. ACS Photonics, 2019, 6, 3082-3091.	3.2	41
58	Janus electrochemical exfoliation of two-dimensional materials. Journal of Materials Chemistry A, 2019, 7, 25691-25711.	5.2	41
59	Imaging and Tuning Molecular Levels at the Surface of a Gated Graphene Device. ACS Nano, 2014, 8, 5395-5401.	7.3	39
60	Strainâ€Induced Isomerization in Oneâ€Dimensional Metal–Organic Chains. Angewandte Chemie - International Edition, 2019, 58, 18591-18597.	7.2	37
61	Resolving the Spatial Structures of Bound Hole States in Black Phosphorus. Nano Letters, 2017, 17, 6935-6940.	4.5	33
62	Supramolecular Structure of Self-Assembled Monolayers of Ferrocenyl Terminated <i>n</i> -Alkanethiolates on Gold Surfaces. Langmuir, 2014, 30, 13447-13455.	1.6	30
63	Machine Vision Automated Chiral Molecule Detection and Classification in Molecular Imaging. Journal of the American Chemical Society, 2021, 143, 10177-10188.	6.6	30
64	Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications, 2021, 12, 70.	5.8	29
65	Substoichiometric Molybdenum Sulfide Phases with Catalytically Active Basal Planes. Journal of the American Chemical Society, 2016, 138, 14121-14128.	6.6	28
66	Reversible Oxidation of Blue Phosphorus Monolayer on Au(111). Nano Letters, 2019, 19, 5340-5346.	4.5	27
67	Semimetal or Semiconductor: The Nature of High Intrinsic Electrical Conductivity in TiS ₂ . Journal of Physical Chemistry Letters, 2019, 10, 6996-7001.	2.1	27
68	High yield electrochemical exfoliation synthesis of tin selenide quantum dots for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 23958-23963.	5.2	26
69	Imprinting Ferromagnetism and Superconductivity in Single Atomic Layers of Molecular Superlattices. Advanced Materials, 2020, 32, e1907645.	11.1	25
70	Frustrated supercritical collapse in tunable charge arrays on graphene. Nature Communications, 2019, 10, 477.	5.8	23
71	Electrochemically Exfoliated Platinum Dichalcogenide Atomic Layers for High-Performance Air-Stable Infrared Photodetectors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8518-8527.	4.0	23
72	A focus review on 3D printing of wearable energy storage devices. , 2022, 4, 1242-1261.		23

#	Article	IF	CITATIONS
73	Ionic liquid-functionalized carbon nanoparticles-modified cathode for efficiency enhancement in polymer solar cells. Applied Physics Letters, 2009, 95, 133305.	1.5	19
74	Strainâ€Induced Isomerization in Oneâ€Dimensional Metal–Organic Chains. Angewandte Chemie, 2019, 131, 18764-18770.	1.6	19
7 5	Chemical design and synthesis of superior single-atom electrocatalysts <i>via in situ</i> polymerization. Journal of Materials Chemistry A, 2020, 8, 17683-17690.	5.2	19
76	Triangulenes: From Precursor Design to Onâ€Surface Synthesis and Characterization. Angewandte Chemie, 2020, 132, 7730-7740.	1.6	18
77	Electrically controlled dielectric band gap engineering in a two-dimensional semiconductor. Physical Review B, 2020, 101, .	1.1	17
78	Towards high efficiency solution processable inverted bulk heterojunction polymer solar cells using modified indium tin oxide cathode. Organic Electronics, 2010, 11, 1942-1946.	1.4	15
79	Giant Emission Enhancement of Solid‧tate Gold Nanoclusters by Surface Engineering. Angewandte Chemie, 2020, 132, 8347-8353.	1.6	15
80	Real-Space Imaging of a Single-Molecule Monoradical Reaction. Journal of the American Chemical Society, 2020, 142, 13550-13557.	6.6	14
81	Atomically Precise Single Metal Oxide Cluster Catalyst with Oxygenâ€Controlled Activity. Advanced Functional Materials, 2022, 32, .	7.8	13
82	Degradation Chemistry and Kinetic Stabilization of Magnetic Crl ₃ . Journal of the American Chemical Society, 2022, 144, 5295-5303.	6.6	13
83	A molecular shift register made using tunable charge patterns in one-dimensional molecular arrays on graphene. Nature Electronics, 2020, 3, 598-603.	13.1	12
84	Visualizing designer quantum states in stable macrocycle quantum corrals. Nature Communications, 2021, 12, 5895.	5.8	12
85	Grapheneâ€Oxideâ€Catalyzed Direct CHâ^'CHâ€Type Crossâ€Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie, 2018, 130, 11014-11019.	1.6	11
86	Electrostatically Tunable Nearâ€Infrared Plasmonic Resonances in Solutionâ€Processed Atomically Thin NbSe ₂ . Advanced Materials, 2021, 33, e2101950.	11.1	11
87	Growing Suspended Graphene on C ₆₀ Molecules. Small, 2012, 8, 3728-3732.	5.2	10
88	Learning motifs and their hierarchies in atomic resolution microscopy. Science Advances, 2022, 8, eabk1005.	4.7	10
89	Studying Edge Defects of Hexagonal Boron Nitride Using High-Resolution Electron Energy Loss Spectroscopy. Journal of Physical Chemistry Letters, 2015, 6, 4189-4193.	2.1	9
90	Manifold dynamic non-covalent interactions for steering molecular assembly and cyclization. Chemical Science, 2021, 12, 11659-11667.	3.7	9

#	Article	IF	CITATIONS
91	High resolution electron energy loss spectroscopy study of Zinc phthalocyanine and tetrafluoro tetracyanoquinodimethane on Au (111). Chemical Physics Letters, 2009, 468, 28-31.	1.2	7
92	Substrate induced strain for on-surface transformation and synthesis. Nanoscale, 2020, 12, 7500-7508.	2.8	7
93	Sub-Angstrom Imaging of Nondegenerate Kekul© Structures in a Two-Dimensional Halogen-Bonded Supramolecular Network. Journal of Physical Chemistry C, 2022, 126, 4241-4247.	1.5	5
94	Sub-angstrom noninvasive imaging of atomic arrangement in 2D hybrid perovskites. Science Advances, 2022, 8, eabj0395.	4.7	5
95	Electronic Self-Passivation of Single Vacancy in Black Phosphorus via Ionization. Physical Review Letters, 2022, 128, 176801.	2.9	4
96	Effects and thermal stability of hydrogen microwave plasma treatment on tetrahedral amorphous carbon films by in situ ultraviolet photoelectron spectroscopy. Journal of Applied Physics, 2009, 106, 024901.	1.1	3
97	Tissue Engineering: Fluorinated Graphene for Promoting Neuroâ€Induction of Stem Cells (Adv. Mater.) Tj ETQq1	1 0.78431 11.1	4 ggBT /Over
98	Singleâ€Molecule Chemical Reactions Tracked at the Atomicâ€Bond Level. Angewandte Chemie - International Edition, 2013, 52, 13521-13523.	7.2	3
99	Tailoring long-range superlattice chirality in molecular self-assemblies <i>via</i> weak fluorine-mediated interactions. Physical Chemistry Chemical Physics, 2021, 23, 21489-21495.	1.3	2
100	Two-Dimensional Conjugated Covalent Organic Framework Films via Oxidative C–C Coupling Reactions at a Liquid–Liquid Interface. Organic Materials, 2021, 03, 060-066.	1.0	2
101	Catalytically active atomically thin cuprate with periodic Cu single sites. National Science Review, 2023, 10, .	4.6	2
102	Designing Energy Materials via Atomic-resolution Microscopy and Spectroscopy. Microscopy and Microanalysis, 2019, 25, 1998-1999.	0.2	1
103	Graphene: Growing Suspended Graphene on C ₆₀ Molecules (Small 24/2012). Small, 2012, 8, 3727-3727.	5.2	0
104	Innenrþcktitelbild: Room-Temperature Ice Growth on Graphite Seeded by Nano-Graphene Oxide (Angew.) Tj ET	Qq0,00 rg	ςΒΤ /Overloc
105	Frontispiz: Graphene-Oxide-Catalyzed Direct CHâ^'CH-Type Cross-Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie, 2018, 130, .	1.6	O
106	Energy Spotlight. ACS Energy Letters, 2022, 7, 2401-2402.	8.8	0