Jun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4162699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A general synthetic strategy for N, P co-doped graphene supported metal-rich noble metal phosphides for hydrogen generation. Green Energy and Environment, 2024, 9, 152-162.	8.7	3
2	Multiple deformation mechanisms induced by pre-twinning in CoCrFeNi high entropy alloy. Scripta Materialia, 2022, 207, 114266.	5.2	37
3	Plastic deformation behavior of ultrafine grained CoCrFeNiMn high entropy alloy with nanoparticles. Intermetallics, 2022, 142, 107459.	3.9	3
4	Microstructure evolution and mechanical properties of CoCrFeNiAl0.3 high entropy alloy produced by ball milling in combination with thermomechanical consolidation. Materials Characterization, 2022, 187, 111833.	4.4	11
5	On the preferential grain boundary oxidation of a Ni-Co-based superalloy. Corrosion Science, 2022, 199, 110203.	6.6	34
6	Unveiling the mechanism of yttrium-related microstructure inhibiting or promoting high-temperature oxidation based on Ni-Al-Y alloys. Acta Materialia, 2021, 211, 116879.	7.9	16
7	Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Metals, 2021, 40, 3375-3405.	7.1	112
8	Phase interface induced stacking faults in Al-7.5Y alloy revealed by in-situ synchrotron X-ray diffraction and ex-situ electron microscopy. Materials Characterization, 2021, 179, 111322.	4.4	9
9	Mechanical properties and electrical conductivity of cold rolled Al-7.5wt%Y alloy with heterogeneous lamella structure and stacking faults. Journal of Alloys and Compounds, 2021, 882, 160692.	5.5	14
10	Grain growth and strengthening mechanisms of ultrafine-grained CoCrFeNiMn high entropy alloy matrix nanocomposites fabricated by powder metallurgy. Journal of Alloys and Compounds, 2020, 819, 152937.	5.5	32
11	Formation of multilayer interfaces and the load transfer in graphene nanoplatelets reinforced Al matrix composites. Materials Characterization, 2020, 159, 110018.	4.4	32
12	High strength high electrical conductivity ultrafine-grained Al–Y alloy processed via cold drawing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138824.	5.6	20
13	Effect of NbC volume fraction on mechanical properties of ultrafine grained Cu–NbC nanocomposites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139674.	5.6	3
14	Ni-based aligned plate intermetallic nanostructures as effective catalysts for hydrogen evolution reaction. Materials Letters, 2020, 272, 127831.	2.6	7
15	Sustaining strength–ductility synergy of CoCrFeNiMn high entropy alloy by a multilevel heterogeneity associated with nanoparticles. Scripta Materialia, 2020, 187, 390-394.	5.2	32
16	A novel nanostructure to achieve ultrahigh strength and good tensile ductility of a CoCrFeNiMn high entropy alloy. Nanoscale, 2020, 12, 5347-5352.	5.6	25
17	Enhanced strength and toughness of bulk ultrafine grained Cu by nacre-inspired lamellar structure. Journal of Alloys and Compounds, 2020, 826, 154234.	5.5	3
18	A nanograins-attached and ultrathin Cu flake powder fabricated by high energy mechanical milling and dealloying. Materials Letters, 2020, 265, 127432.	2.6	7

Jun Wang

#	Article	IF	CITATIONS
19	Improving the mechanical behavior of an ultrafine grained Cu-6.4vol.%NbC nanocomposite by hot rolling. Materials Letters, 2020, 265, 127456.	2.6	5
20	Effects of the γ″-Ni3Nb Phase on Mechanical Properties of Inconel 718 Superalloys with Different Heat Treatments. Materials, 2020, 13, 151.	2.9	26
21	Investigations of strength and ductility in Ni-xCo-10Al alloys via discontinuous precipitation. Materials Characterization, 2020, 163, 110318.	4.4	6
22	Activating Basal Planes of NiPS ₃ for Hydrogen Evolution by Nonmetal Heteroatom Doping. Advanced Functional Materials, 2020, 30, 1908708.	14.9	96
23	Enlightening from γ, γ′ and β phase transformations in Al-Co-Ni alloy system: A review. Current Opinion in Solid State and Materials Science, 2019, 23, 100784.	11.5	16
24	The effect of discontinuous γ' precipitation on the mechanical properties of Al-Co-Ni alloys. Materials Characterization, 2019, 151, 612-619.	4.4	12
25	Two-way shape memory effect and magnetic-field-induced twin boundary motion in Ni-Mn-Ga microwire. Materials Letters, 2019, 243, 173-175.	2.6	9
26	Oxidation behavior and microstructure degeneration of cast Ni-based superalloy M951 at 900â€Â°C. Applied Surface Science, 2019, 479, 709-719.	6.1	32
27	Fabrication of CoCrFeNiMn high entropy alloy matrix composites by thermomechanical consolidation of a mechanically milled powder. Materials Characterization, 2019, 148, 307-316.	4.4	32
28	Temperature-dependent deformation mechanisms and microstructural degradation of a polycrystalline nickel-based superalloy. Journal of Alloys and Compounds, 2019, 775, 181-192.	5.5	17
29	Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites. Materials Characterization, 2018, 140, 172-178.	4.4	111
30	Microstructure evolution and mechanical performance of nickel based superalloy C1023 at elevated temperatures. Materials Characterization, 2018, 138, 174-185.	4.4	17
31	Crack formation and microstructure-sensitive propagation in low cycle fatigue of a polycrystalline nickel-based superalloy with different heat treatments. International Journal of Fatigue, 2018, 108, 79-89.	5.7	23
32	Strengthening effects and thermal stability of the ultrafine grained microstructure of a nickel base superalloy at room and elevated temperatures. Materials Characterization, 2018, 145, 362-370.	4.4	11
33	Fracture mechanisms induced by microporosity and precipitates in isothermal fatigue of polycrystalline nickel based superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 736, 438-452.	5.6	17
34	Effects of microporosity and precipitates on the cracking behavior in polycrystalline superalloy Inconel 718. Materials Characterization, 2017, 132, 175-186.	4.4	21
35	Effect of Ag on the aging characteristics of Cu–Fe in situ composites. Scripta Materialia, 2006, 54, 1931-1935.	5.2	41