Majid Ali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4162646/publications.pdf

Version: 2024-02-01

		304743	414414
39	2,064 citations	22	32
papers	citations	h-index	g-index
39	39	39	924
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mechanical and dynamic properties of coconut fibre reinforced concrete. Construction and Building Materials, 2012, 30, 814-825.	7.2	319
2	Improvement in concrete behavior with fly ash, silica-fume and coconut fibres. Construction and Building Materials, 2019, 203, 174-187.	7.2	178
3	Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks. Construction and Building Materials, 2016, 125, 800-808.	7.2	136
4	Efficiency of silica-fume content in plain and natural fiber reinforced concrete for concrete road. Construction and Building Materials, 2020, 244, 118382.	7.2	113
5	Effect of basalt fibers on mechanical properties of calcium carbonate whisker-steel fiber reinforced concrete. Construction and Building Materials, 2018, 192, 742-753.	7.2	104
6	Effect of super plasticizer on the properties of medium strength concrete prepared with coconut fiber. Construction and Building Materials, 2018, 182, 703-715.	7.2	99
7	Experimental investigations on bond strength between coconut fibre and concrete. Materials & Design, 2013, 44, 596-605.	5.1	98
8	Effectiveness of hair and wave polypropylene fibers for concrete roads. Construction and Building Materials, 2018, 166, 581-591.	7.2	83
9	Properties of hybrid steel-basalt fiber reinforced concrete exposed to different surrounding conditions. Construction and Building Materials, 2022, 322, 126340.	7.2	70
10	Efficiency of basalt fiber length and content on mechanical and microstructural properties of hybrid fiber concrete. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 2135-2152.	3.4	69
11	Behavior of fiber reinforced concrete for controlling the rate of cracking in canal-lining. Construction and Building Materials, 2017, 155, 726-739.	7.2	67
12	Experimental and analytical study of hybrid fiber reinforced concrete prepared with basalt fiber under high temperature. Fire and Materials, 2022, 46, 205-226.	2.0	66
13	Experimental investigations on coconut-fibre rope tensile strength and pullout from coconut fibre reinforced concrete. Construction and Building Materials, 2013, 41, 681-690.	7.2	60
14	Cracking behaviour and constitutive modelling of hybrid fibre reinforced concrete. Journal of Building Engineering, 2020, 30, 101272.	3.4	57
15	Hybrid fiber concrete with different basalt fiber length and content. Structural Concrete, 2022, 23, 346-364.	3.1	57
16	Capacity of innovative interlocking blocks under monotonic loading. Construction and Building Materials, 2012, 37, 812-821.	7.2	52
17	Contribution of plant fibers in improving the behavior and capacity of reinforced concrete for structural applications. Construction and Building Materials, 2018, 182, 94-107.	7.2	48
18	Effectiveness of hybrid steel-basalt fiber reinforced concrete under compression. Case Studies in Construction Materials, 2022, 16, e00941.	1.7	48

#	Article	IF	Citations
19	Dynamic response of mortar-free interlocking structures. Construction and Building Materials, 2013, 42, 168-189.	7.2	45
20	Effect of pre-treatment and content of wheat straw on energy absorption capability of concrete. Construction and Building Materials, 2019, 224, 572-583.	7.2	42
21	Seismic performance of coconut-fibre-reinforced-concrete columns with different reinforcement configurations of coconut-fibre ropes. Construction and Building Materials, 2014, 70, 226-230.	7.2	28
22	Use of natural fibrous plaster for improving the out of plane lateral resistance of mortarless interlocked masonry walling. Construction and Building Materials, 2018, 174, 320-329.	7.2	26
23	Improving the impact resistance and dynamic properties of jute fiber reinforced concrete for rebars design by considering tension zone of FRC. Construction and Building Materials, 2019, 213, 592-607.	7.2	26
24	Experimental investigation on mechanical properties of jute fiber reinforced concrete under freeze-thaw conditions for pavement applications. Construction and Building Materials, 2022, 323, 126599.	7.2	26
25	Improving the Tensile Energy Absorption of High Strength Natural Fiber Reinforced Concrete with Fly-Ash for Bridge Girders. Key Engineering Materials, 0, 765, 335-342.	0.4	21
26	Residual compressive and shear strengths of novel coconut-fibre-reinforced-concrete interlocking blocks. Construction and Building Materials, 2014, 66, 533-540.	7.2	19
27	Use of agriculture waste as short discrete fibers and glass-fiber-reinforced-polymer rebars in concrete walls for enhancing impact resistance. Journal of Cleaner Production, 2020, 268, 122211.	9.3	19
28	Use of coconut fibre reinforced concrete and coconut-fibre ropes for seismic-resistant construction. Materiales De Construccion, 2016, 66, e073.	0.7	18
29	A study on Natural Fibre Reinforced Concrete from Materials to Structural Applications. Arabian Journal for Science and Engineering, 2023, 48, 4471-4491.	3.0	15
30	Optimization of concrete stiffeners for confined brick masonry structures. Journal of Building Engineering, 2020, 32, 101689.	3.4	13
31	Effect of Fibre Content on Compressive Strength of Wheat Straw Reinforced Concrete for Pavement Applications. IOP Conference Series: Materials Science and Engineering, 0, 422, 012014.	0.6	11
32	Improvement in lateral resistance of mortar-free interlocking wall with plaster having natural fibres. Construction and Building Materials, 2020, 234, 117387.	7.2	10
33	Effect of Fibre Content on Splitting-Tensile Strength of Wheat Straw Reinforced Concrete for Pavement Applications. Key Engineering Materials, 0, 765, 349-354.	0.4	7
34	Effectiveness of Polypropylene Fiber Reinforced Concrete in Enhancement of Long-Term Durability of Hydraulic Structures. Materials Science Forum, 0, 923, 125-129.	0.3	6
35	Role of Post-tensioned Coconut-fibre Ropes in Mortar-free Interlocking Concrete Construction During Seismic Loadings. KSCE Journal of Civil Engineering, 2018, 22, 1336-1343.	1.9	3
36	Effect of Banana Fiber on Flexural Properties of Fiber Reinforced Concrete for Sustainable Construction., 2021, 12,.		3

Majid Ali

#	Article	IF	CITATIONS
37	Assessment of mechanical properties of fibrous mortar and interlocking soil stabilised block (ISSB) for low-cost masonry housing. Materiales De Construccion, 2019, 69, 201.	0.7	2
38	Modification of traditional supporting steelwork system for non-standard structures. Engineering Structures, 2015, 96, 153-159.	5.3	0
39	Contribution of Sisal Reinforced Plaster in out of Plane Resistance of Masonry Column. Key Engineering Materials, 2018, 765, 343-348.	0.4	O