
Sjaak Philipsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4162598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenomic analysis of KLF1 haploinsufficiency in primary human erythroblasts. Scientific Reports, 2022, 12, 336.	1.6	5
2	Comparison of the PU.1 transcriptional regulome and interactome in human and mouse inflammatory dendritic cells. Journal of Leukocyte Biology, 2021, 110, 735-751.	1.5	3
3	Hemoglobin switching in mice carrying the Klf1Nan variant. Haematologica, 2021, 106, 464-473.	1.7	4
4	PLGA-Nanoparticles for Intracellular Delivery of the CRISPR-Complex to Elevate Fetal Globin Expression in Erythroid Cells. Biomaterials, 2021, 268, 120580.	5.7	29
5	Molecular analysis of the erythroid phenotype of a patient with BCL11A haploinsufficiency. Blood Advances, 2021, 5, 2339-2349.	2.5	7
6	Editorial: Mutation-Specific Gene Editing for Blood Disorders. Frontiers in Genome Editing, 2021, 3, 761771.	2.7	0
7	A ubiquitin ligase toggles red cell differentiation. Blood, 2021, 137, 143-144.	0.6	1
8	Targeted Protein Degradation as a Promising Tool for Epigenetic Upregulation of Fetal Hemoglobin. ChemMedChem, 2020, 15, 2436-2443.	1.6	7
9	Mild dyserythropoiesis and β-like globin gene expression imbalance due to the loss of histone chaperone ASF1B. Human Genomics, 2020, 14, 39.	1.4	2
10	An evolutionarily ancient mechanism for regulation of hemoglobin expression in vertebrate red cells. Blood, 2020, 136, 269-278.	0.6	16
11	Genetic Heterogeneity of KLF1, a Master Regulator of Erythropoiesis, Revealed an Autosomal Recessive Î [·] Î ² -Thalassemia and a Very Strong Promoter In Vivo. Blood, 2020, 136, 7-7.	0.6	0
12	Robust hematopoietic specification requires the ubiquitous Sp1 and Sp3 transcription factors. Epigenetics and Chromatin, 2019, 12, 33.	1.8	21
13	Prediction of response to pemetrexed in non-small-cell lung cancer with immunohistochemical phenotyping based on gene expression profiles. BMC Cancer, 2019, 19, 440.	1.1	7
14	Transcription factor Sp4 is required for hyperalgesic state persistence. PLoS ONE, 2019, 14, e0211349.	1,1	6
15	The mouse KLF1 Nan variant impairs nuclear condensation and erythroid maturation. PLoS ONE, 2019, 14, e0208659.	1.1	10
16	A Twenty-Five Year Prospective Clinical Review and Family Studies Revealed New Globin Gene Regulators for Hb F Induction. Hemoglobin, 2019, 43, 337-337.	0.4	0
17	Rapid and Sensitive Assessment of Globin Chains for Gene and Cell Therapy of Hemoglobinopathies. Human Gene Therapy Methods, 2018, 29, 60-74.	2.1	17
18	Evolution of hemoglobin loci and their regulatory elements. Blood Cells, Molecules, and Diseases, 2018, 70, 2-12.	0.6	37

#	Article	IF	CITATIONS
19	Genomic Location of PRMT6-Dependent H3R2 Methylation Is Linked to the Transcriptional Outcome of Associated Genes. Cell Reports, 2018, 24, 3339-3352.	2.9	38
20	Identification of a novel distal regulatory element of the humanNeuroglobingene by the chromosome conformation capture approach. Nucleic Acids Research, 2017, 45, 115-126.	6.5	36
21	Hereditary persistence of fetal hemoglobin in two patients with KLF1 haploinsufficiency due to 19p13.2–p13.12/13 deletion. American Journal of Hematology, 2017, 92, E2-E3.	2.0	6
22	Sp2 is the only glutamineâ€rich specificity protein with minor impact on development and differentiation in myelinating glia. Journal of Neurochemistry, 2017, 140, 245-256.	2.1	2
23	KLF1 directly activates expression of the novel fetal globin repressor ZBTB7A/LRF in erythroid cells. Blood Advances, 2017, 1, 685-692.	2.5	42
24	KrÃŀ⁄4ppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants. Blood, 2016, 127, 1856-1862.	0.6	124
25	<scp>ASH</scp> 1L (a histone methyltransferase protein) is a novel candidate globin gene regulator revealed by genetic study of an English family with betaâ€thalassaemia unlinked to the betaâ€globin locus. British Journal of Haematology, 2016, 175, 525-530.	1.2	6
26	GATA1-Deficient Dendritic Cells Display Impaired CCL21-Dependent Migration toward Lymph Nodes Due to Reduced Levels of Polysialic Acid. Journal of Immunology, 2016, 197, 4312-4324.	0.4	12
27	Chtop (Chromatin target of Prmt1) auto-regulates its expression level via intron retention and nonsense-mediated decay of its own mRNA. Nucleic Acids Research, 2016, 44, gkw831.	6.5	16
28	Endogenous WNT Signals Mediate BMP-Induced and Spontaneous Differentiation of Epiblast Stem Cells and Human Embryonic Stem Cells. Stem Cell Reports, 2015, 4, 114-128.	2.3	122
29	TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis. Molecular and Cellular Biology, 2015, 35, 2103-2118.	1.1	14
30	Sp1/Sp3 transcription factors regulate hallmarks of megakaryocyte maturation and platelet formation and function. Blood, 2015, 125, 1957-1967.	0.6	57
31	ASH1L: A Novel Beta-Globin Gene Regulator in Humans?. Blood, 2015, 126, 641-641.	0.6	0
32	A crucial role for the ubiquitously expressed transcription factor Sp1 at early stages of hematopoietic specification. Development (Cambridge), 2014, 141, 2391-2401.	1.2	51
33	Flicking the switch: adult hemoglobin expression in erythroid cells derived from cord blood and human induced pluripotent stem cells. Haematologica, 2014, 99, 1647-1649.	1.7	14
34	Mutations in Krüppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression. Blood, 2014, 123, 1586-1595.	0.6	76
35	Hypoxia increases membrane metallo-endopeptidase expression in a novel lung cancer ex vivo model – role of tumor stroma cells. BMC Cancer, 2014, 14, 40.	1.1	51
36	Transcription Factor GATA1 Is Dispensable for Mast Cell Differentiation in Adult Mice. Molecular and Cellular Biology, 2014, 34, 1812-1826.	1.1	25

#	Article	IF	CITATIONS
37	TAF10 Interacts with GATA1 Transcription Factor and Controls Mouse Erythropoiesis. Blood, 2014, 124, 2912-2912.	0.6	0
38	Transfusion-independent β(0)-thalassemia after bone marrow transplantation failure: proposed involvement of high parental HbF and an epigenetic mechanism. American Journal of Blood Research, 2014, 4, 27-32.	0.6	6
39	Genomic variation in the <i>MAP3K5</i> gene is associated with β-thalassemia disease severity and hydroxyurea treatment efficacy. Pharmacogenomics, 2013, 14, 469-483.	0.6	25
40	Erythropoietic Defect Associated with Reduced Cell Proliferation in Mice Lacking the 26S Proteasome Shuttling Factor Rad23b. Molecular and Cellular Biology, 2013, 33, 3879-3892.	1.1	9
41	Erythropoiesis and globin switching in compound Klf1::Bcl11a mutant mice. Blood, 2013, 121, 2553-2562.	0.6	46
42	A new twist to the GATA switch. Blood, 2013, 122, 3391-3392.	0.6	5
43	Genomewide DNA Methylation Analysis Identifies Novel Methylated Genes in Non–Small-Cell Lung Carcinomas. Journal of Thoracic Oncology, 2013, 8, 562-573.	0.5	31
44	Expression Profiling-Based Subtyping Identifies Novel Non-small Cell Lung Cancer Subgroups and Implicates Putative Resistance to Pemetrexed Therapy. Journal of Thoracic Oncology, 2012, 7, 105-114.	0.5	39
45	Genome-wide DNA methylation profiling of non-small cell lung carcinomas. Epigenetics and Chromatin, 2012, 5, 9.	1.8	74
46	A Dual Reporter Mouse Model of the Human β-Globin Locus: Applications and Limitations. PLoS ONE, 2012, 7, e51272.	1.1	12
47	Erythropoiesis and Globin Switching in Compound Klf1::Bcl11a mutant mice. Blood, 2012, 120, 1019-1019.	0.6	1
48	Functional and sequence analysis of human neuroglobin gene promoter region. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 236-244.	0.9	31
49	Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach. Nature Genetics, 2011, 43, 295-301.	9.4	142
50	Sox2 cooperates with Chd7 to regulate genes that are mutated in human syndromes. Nature Genetics, 2011, 43, 607-611.	9.4	230
51	Differential regulation of sense and antisense promoter activity at the Csf1R locus in B cells by the transcription factor PAX5. Experimental Hematology, 2011, 39, 730-740.e2.	0.2	4
52	Erythroid phenotypes associated with KLF1 mutations. Haematologica, 2011, 96, 635-638.	1.7	78
53	The DNA binding factor Hmg20b is a repressor of erythroid differentiation. Haematologica, 2011, 96, 1252-1260.	1.7	16
54	Does Quantitative Heterogeneity of Human Fetal Hemoglobin (Hb F) Reveal Friends or Foes of KLF1 in Globin Gene Switching ?. Blood, 2011, 118, 1092-1092.	0.6	1

#	Article	IF	CITATIONS
55	Vegf regulates embryonic erythroid development through Gata1 modulation. Blood, 2010, 116, 2141-2151.	0.6	23
56	Dynamic regulation of Gata1 expression during the maturation of conventional dendritic cells. Experimental Hematology, 2010, 38, 489-503.e1.	0.2	11
57	Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nature Genetics, 2010, 42, 801-805.	9.4	323
58	Specificity Protein 2 (Sp2) Is Essential for Mouse Development and Autonomous Proliferation of Mouse Embryonic Fibroblasts. PLoS ONE, 2010, 5, e9587.	1.1	22
59	Gene Expression-Based Classification of Non-Small Cell Lung Carcinomas and Survival Prediction. PLoS ONE, 2010, 5, e10312.	1.1	656
60	Epigenetic Silencing of Spermatocyte-Specific and Neuronal Genes by SUMO Modification of the Transcription Factor Sp3. PLoS Genetics, 2010, 6, e1001203.	1.5	34
61	Fetal globin expression is regulated by Friend of Prmt1. Blood, 2010, 116, 4349-4352.	0.6	43
62	Functional analysis of the role of the <i>TPMT</i> gene promoter VNTR polymorphism in <i>TPMT</i> gene transcription. Pharmacogenomics, 2010, 11, 547-557.	0.6	40
63	Erythropoiesis. , 2009, , 24-45.		1
64	Localization and expression pattern of cytoglobin in carbon tetrachloride-induced liver fibrosis. Toxicology Letters, 2008, 183, 36-44.	0.4	15
65	Sp1-Mediated TRAIL Induction in Chemosensitization. Cancer Research, 2008, 68, 6718-6726.	0.4	46
66	Ablation of Gata1 in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis. Blood, 2008, 111, 4375-4385.	0.6	88
67	Transcription Factor Sp3 Knockout Mice Display Serious Cardiac Malformations. Molecular and Cellular Biology, 2007, 27, 8571-8582.	1.1	50
68	Dynamic regulation of Gata factor levels is more important than their identity. Blood, 2007, 109, 5481-5490.	0.6	45
69	Gata1 regulates dendritic-cell development and survival. Blood, 2007, 110, 1933-1941.	0.6	55
70	Study of the hypoxia-dependent regulation of human CYGB gene. Biochemical and Biophysical Research Communications, 2007, 364, 145-150.	1.0	37
71	<i>Sp1/Sp3</i> compound heterozygous mice are not viable: Impaired erythropoiesis and severe placental defects. Developmental Dynamics, 2007, 236, 2235-2244.	0.8	59
72	lsolation of Transcription Factor Complexes by In Vivo Biotinylation Tagging and Direct Binding to Streptavidin Beads. , 2006, 338, 305-323.		25

#	Article	IF	CITATIONS
73	Real-time monitoring of stress erythropoiesis in vivo using Gata1 and β-globin LCR luciferase transgenic mice. Blood, 2006, 108, 726-733.	0.6	21
74	Characterization of human cytoglobin gene promoter region. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2006, 1759, 208-215.	2.4	21
75	A hanging drop culture method to study terminal erythroid differentiation. Experimental Hematology, 2005, 33, 1083-1091.	0.2	18
76	A generic tool for biotinylation of tagged proteins in transgenic mice. Transgenic Research, 2005, 14, 477-482.	1.3	81
77	The Erythroid Phenotype of EKLF-Null Mice: Defects in Hemoglobin Metabolism and Membrane Stability. Molecular and Cellular Biology, 2005, 25, 5205-5214.	1.1	147
78	GATA1 Function, a Paradigm for Transcription Factors in Hematopoiesis. Molecular and Cellular Biology, 2005, 25, 1215-1227.	1.1	360
79	Mammalian SP/KLF transcription factors: Bring in the family. Genomics, 2005, 85, 551-556.	1.3	328
80	Transcriptional Regulation of BACE1, the β-Amyloid Precursor Protein β-Secretase, by Sp1. Molecular and Cellular Biology, 2004, 24, 865-874.	1.1	207
81	Homotypic signalling regulates Gata1 activity in the erythroblastic island. Development (Cambridge), 2004, 131, 3183-3193.	1.2	20
82	The active spatial organization of the Â-globin locus requires the transcription factor EKLF. Genes and Development, 2004, 18, 2485-2490.	2.7	321
83	A tissue-specific knockout reveals that Gata1 is not essential for Sertoli cell function in the mouse. Nucleic Acids Research, 2003, 31, 5405-5412.	6.5	65
84	Impaired hematopoiesis in mice lacking the transcription factor Sp3. Blood, 2003, 102, 858-866.	0.6	41
85	Functional and comparative analysis of globin loci in pufferfish and humans. Blood, 2003, 101, 2842-2849.	0.6	53
86	Regulation of the activity of Sp1-related transcription factors. Molecular and Cellular Endocrinology, 2002, 195, 27-38.	1.6	416
87	Impaired ossification in mice lacking the transcription factor Sp3. Mechanisms of Development, 2001, 106, 77-83.	1.7	99
88	Complex phenotype of mice homozygous for a null mutation in the Sp4 transcription factor gene. Genes To Cells, 2001, 6, 689-697.	0.5	54
89	Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha globin cluster. Human Molecular Genetics, 2001, 10, 371-382.	1.4	151
90	An intrinsic but cell-nonautonomous defect in GATA-1-overexpressing mouse erythroid cells. Nature, 2000, 406, 519-524.	13.7	97

#	Article	IF	CITATIONS
91	Activation of the beta globin locus by transcription factors and chromatin modifiers. EMBO Journal, 2000, 19, 4986-4996.	3.5	48
92	Transcription factor Sp3 is essential for post-natal survival and late tooth development. EMBO Journal, 2000, 19, 655-661.	3.5	175
93	Effects of three Sp1 motifs on the transcription of the FGF-4 gene. Molecular Reproduction and Development, 2000, 57, 4-15.	1.0	27
94	Sp1 Binding Is Critical for Promoter Assembly and Activation of the MCP-1 Gene by Tumor Necrosis Factor. Journal of Biological Chemistry, 2000, 275, 1708-1714.	1.6	80
95	A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Research, 1999, 27, 2991-3000.	6.5	571
96	Nucleotide changes in the γ-globin promoter and the (AT)xNy(AT)z polymorphic sequence of βLCRHS-2 region associated with altered levels of HbF. European Journal of Human Genetics, 1999, 7, 345-356.	1.4	17
97	Synergistic Activation of the Human Btk Promoter by Transcription Factors Sp1/3 and PU.1. Biochemical and Biophysical Research Communications, 1999, 259, 364-369.	1.0	24
98	Erythroid Kruppel-like factor (EKLF) is active in primitive and definitive erythroid cells and is required for the function of 5'HS3 of the beta -globin locus control region. EMBO Journal, 1998, 17, 2334-2341.	3.5	70
99	Altered DNA-binding specificity mutants of EKLF and Sp1 show that EKLF is an activator of the beta -globin locus control region in vivo. Genes and Development, 1998, 12, 2863-2873.	2.7	60
100	Transcription Factor Sp1 Is Essential for Early Embryonic Development but Dispensable for Cell Growth and Differentiation. Cell, 1997, 89, 619-628.	13.5	484
101	The level of the tissueâ€specific factor GATAâ€1 affects the cellâ€cycle machinery. Genes and Function, 1997, 1, 11-24.	2.8	61
102	A dominant chromatin-opening activity in 5′ hypersensitive site 3 of the human beta-globin locus control region EMBO Journal, 1996, 15, 562-568.	3.5	201
103	The role of EKLF in human beta-globin gene competition Genes and Development, 1996, 10, 2894-2902.	2.7	187
104	Role of DNA Sequences Outside the Cores of DNase Hypersensitive Sites (HSs) in Functions of the β-Globin Locus Control Region. Journal of Biological Chemistry, 1996, 271, 11871-11878.	1.6	52
105	The human β <i>-globin</i> locus control region confers an early embryonic erythroid-specific expression pattern to a basic promoter driving the bacterial <i>lacZ</i> gene. Development (Cambridge), 1996, 122, 3991-3999.	1.2	31
106	A dominant chromatin-opening activity in 5' hypersensitive site 3 of the human beta-globin locus control region. EMBO Journal, 1996, 15, 562-8.	3.5	76
107	The human beta-globin locus control region confers an early embryonic erythroid-specific expression pattern to a basic promoter driving the bacterial lacZ gene. Development (Cambridge), 1996, 122, 3991-9.	1.2	18
108	Transcriptional activation by hypersensitive site three of the human β-globin locus control region in murine erythroleukemia cells. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1219, 351-360.	2.4	14

#	Article	IF	CITATIONS
109	The minimal requirements for activity in transgenic mice of hypersensitive site 3 of the beta globin locus control region EMBO Journal, 1993, 12, 1077-1085.	3.5	92
110	The regulation of human globin gene switching. , 1993, , 45-53.		1
111	The minimal requirements for activity in transgenic mice of hypersensitive site 3 of the beta globin locus control region. EMBO Journal, 1993, 12, 1077-85.	3.5	37
112	Hypersensitive site 4 of the human β globin locus control region. Nucleic Acids Research, 1991, 19, 1413-1419.	6.5	148
113	The beta-globin dominant control region: hypersensitive site 2 EMBO Journal, 1990, 9, 2159-2167.	3.5	273
114	The beta-globin dominant control region: hypersensitive site 2. EMBO Journal, 1990, 9, 2159-67.	3.5	126
115	Detailed analysis of the site 3 region of the human beta-globin dominant control region. EMBO	3.5	134