
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4162517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Science and technology of ammonia combustion. Proceedings of the Combustion Institute, 2019, 37, 109-133.	2.4	997
2	Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames. Combustion and Flame, 2018, 187, 185-198.	2.8	449
3	Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures. Fuel, 2015, 159, 98-106.	3.4	420
4	Performances and emission characteristics of NH3–air and NH3CH4–air combustion gas-turbine power generations. Proceedings of the Combustion Institute, 2017, 36, 3351-3359.	2.4	292
5	Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism. Combustion and Flame, 2019, 204, 162-175.	2.8	265
6	Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures. International Journal of Hydrogen Energy, 2015, 40, 9570-9578.	3.8	248
7	Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine. Proceedings of the Combustion Institute, 2019, 37, 4597-4606.	2.4	201
8	Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor. International Journal of Hydrogen Energy, 2017, 42, 14010-14018.	3.8	199
9	Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia. Combustion and Flame, 2020, 211, 406-416.	2.8	197
10	Burning velocity of turbulent premixed flames in a high-pressure environment. Proceedings of the Combustion Institute, 1996, 26, 389-396.	0.3	165
11	Numerical study of a low emission gas turbine like combustor for turbulent ammonia/air premixed swirl flames with a secondary air injection at high pressure. International Journal of Hydrogen Energy, 2017, 42, 27388-27399.	3.8	158
12	Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature. Proceedings of the Combustion Institute, 2005, 30, 827-834.	2.4	151
13	Development of a wide range-operable, rich-lean low-NOx combustor for NH3 fuel gas-turbine power generation. Proceedings of the Combustion Institute, 2019, 37, 4587-4595.	2.4	127
14	Experimental study on general correlation of turbulent burning velocity at high pressure. Proceedings of the Combustion Institute, 1998, 27, 941-948.	0.3	119
15	Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa. Combustion and Flame, 1997, 108, 104-117.	2.8	114
16	Emission characteristics of turbulent non-premixed ammonia/air and methane/air swirl flames through a rich-lean combustor under various wall thermal boundary conditions at high pressure. Combustion and Flame, 2019, 210, 247-261.	2.8	110
17	NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures. Mechanical Engineering Journal, 2015, 2, 14-00402-14-00402.	0.2	101
18	Effects of CO2 dilution on turbulent premixed flames at high pressure and high temperature. Proceedings of the Combustion Institute, 2007, 31, 1451-1458.	2.4	97

#	Article	IF	CITATIONS
19	Laminar burning velocity of hydrogen–air premixed flames at elevated pressure. Experimental Thermal and Fluid Science, 2000, 21, 58-63.	1.5	92
20	Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames. Proceedings of the Combustion Institute, 2000, 28, 375-382.	2.4	91
21	Laminar burning velocities and flame characteristics of CO–H2–CO2–O2 mixtures. International Journal of Hydrogen Energy, 2012, 37, 19158-19167.	3.8	90
22	The unstable behavior of cellular premixed flames induced by intrinsic instability. Proceedings of the Combustion Institute, 2005, 30, 169-176.	2.4	85
23	Flame stability and emissions characteristics of liquid ammonia spray co-fired with methane in a single stage swirl combustor. Fuel, 2021, 287, 119433.	3.4	78
24	Relationship between the smallest scale of flame wrinkles and turbulence characteristics of high-pressure, high-temperature turbulent premixed flames. Proceedings of the Combustion Institute, 2002, 29, 1793-1800.	2.4	77
25	Experimental study of high-pressure turbulent premixed flames. Experimental Thermal and Fluid Science, 2002, 26, 375-387.	1.5	73
26	Effect of the incident shock wave interacting with transversal jet flow on the mixing and combustion. Proceedings of the Combustion Institute, 2011, 33, 2335-2342.	2.4	68
27	Extinction characteristics of a stretched cylindrical premixed flame. Combustion and Flame, 1989, 76, 285-295.	2.8	66
28	Measurement of the laminar burning velocity and kinetics study of the importance of the hydrogen recovery mechanism of ammonia/hydrogen/air premixed flames. Combustion and Flame, 2022, 236, 111753.	2.8	64
29	Burning velocity and flame structure of CH4/NH3/air turbulent premixed flames at high pressure. International Journal of Hydrogen Energy, 2019, 44, 6991-6999.	3.8	63
30	Combined effects of nongray radiation and pressure on premixed CH4/O2/CO2 flames. Combustion and Flame, 2001, 124, 225-230.	2.8	61
31	Extinction limits of an ammonia/air flame propagating in a turbulent field. Fuel, 2019, 246, 178-186.	3.4	59
32	Measurement of the instantaneous flame front structure of syngas turbulent premixed flames at high pressure. Combustion and Flame, 2013, 160, 2434-2441.	2.8	58
33	Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames. Experimental Thermal and Fluid Science, 2014, 52, 288-296.	1.5	57
34	A numerical study of pulsating flame propagation in mixtures of gas and particles. Proceedings of the Combustion Institute, 2000, 28, 815-822.	2.4	54
35	Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame. Combustion and Flame, 2015, 162, 2087-2097.	2.8	54
36	Effects of OH concentration and temperature on NO emission characteristics of turbulent non-premixed CH4/NH3/air flames in a two-stage gas turbine like combustor at high pressure. Proceedings of the Combustion Institute, 2021, 38, 5163-5170.	2.4	54

#	Article	IF	CITATIONS
37	Modelling of ammonia/air non-premixed turbulent swirling flames in a gas turbine-like combustor at various pressures. Combustion Theory and Modelling, 2018, 22, 973-997.	1.0	53
38	Turbulent burning velocity of ammonia/oxygen/nitrogen premixed flame in O2-enriched air condition. Fuel, 2020, 268, 117383.	3.4	53
39	Flame stabilization characteristics of strut divided into two parts in supersonic airflow. Journal of Propulsion and Power, 1995, 11, 112-116.	1.3	52
40	Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames. International Journal of Hydrogen Energy, 2013, 38, 11421-11428.	3.8	52
41	Influence of wall heat loss on the emission characteristics of premixed ammonia-air swirling flames interacting with the combustor wall. Proceedings of the Combustion Institute, 2021, 38, 5139-5146.	2.4	48
42	Turbulent premixed flame characteristics of a CO/H2/O2 mixture highly diluted with CO2 in a high-pressure environment. Proceedings of the Combustion Institute, 2013, 34, 1437-1445.	2.4	46
43	Effects of initial mixture temperature and pressure on laminar burning velocity and Markstein length of ammonia/air premixed laminar flames. Fuel, 2022, 310, 122149.	3.4	46
44	Measurement and analysis of flame surface density for turbulent premixed combustion on a nozzle-type burner. Combustion and Flame, 2000, 122, 43-57.	2.8	45
45	Extinction characteristics of ammonia/air counterflow premixed flames at various pressures. Journal of Thermal Science and Technology, 2016, 11, JTST0048-JTST0048.	0.6	45
46	Flame front structure of turbulent premixed flames of syngas oxyfuel mixtures. International Journal of Hydrogen Energy, 2014, 39, 5176-5185.	3.8	44
47	NOx emission from high-temperature air/methane counterflow diffusion flame. International Journal of Thermal Sciences, 2002, 41, 693-698.	2.6	41
48	Flame structure and radiation characteristics of CO/H2/CO2/air turbulent premixed flames at high pressure. Proceedings of the Combustion Institute, 2011, 33, 1543-1550.	2.4	41
49	Flame front characteristics of turbulent premixed flames diluted with CO2 and H2O at high pressure and high temperature. Proceedings of the Combustion Institute, 2013, 34, 1429-1436.	2.4	40
50	Effect of heat release distribution on combustion oscillation. Proceedings of the Combustion Institute, 2005, 30, 1799-1806.	2.4	38
51	Microgravity experiments on flame spread of an n-decanedroplet array in a high-pressure environment. Proceedings of the Combustion Institute, 2002, 29, 2603-2610.	2.4	37
52	Dilution effects of superheated water vapor on turbulent premixed flames at high pressure and high temperature. Proceedings of the Combustion Institute, 2009, 32, 2607-2614.	2.4	37
53	Experimental and numerical study of product gas characteristics of ammonia/air premixed laminar flames stabilized in a stagnation flow. Proceedings of the Combustion Institute, 2021, 38, 2409-2417.	2.4	37
54	Burning velocity and statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa. Experimental Thermal and Fluid Science, 2015, 68, 196-204.	1.5	34

#	Article	IF	CITATIONS
55	Numerical investigation on the combustion characteristics of turbulent premixed ammonia/air flames stabilized by a swirl burner. Journal of Fluid Science and Technology, 2016, 11, JFST0026-JFST0026.	0.2	32
56	Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0MPa. Experimental Thermal and Fluid Science, 2013, 50, 90-96.	1.5	31
57	Ignition experiment of a fuel droplet in high-pressure high-temperature ambient. Proceedings of the Combustion Institute, 1994, 25, 447-453.	0.3	29
58	Experimental and numerical study of flame ball IR and UV emissions. Combustion and Flame, 1999, 116, 348-359.	2.8	27
59	Laminar Burning Velocity of Stoichiometric CH4/air Premixed Flames at High-Pressure and High-Temperature. JSME International Journal Series B, 2005, 48, 603-609.	0.3	27
60	Turbulent flame propagation limits of ammonia/methane/air premixed mixture in a constant volume vessel. Proceedings of the Combustion Institute, 2021, 38, 5171-5180.	2.4	26
61	Flow Fields and Extinction of Stretched Cylindrical PremixedFlames. Combustion Science and Technology, 1991, 75, 227-239.	1.2	24
62	Experiments on Flame Spread of a Fuel Droplet Array in a High-Pressure Ambience JSME International Journal Series B, 1998, 41, 322-330.	0.3	22
63	An Analysis of a Stretched Cylindrical Premixed Flame. Combustion Science and Technology, 1988, 57, 17-36.	1.2	21
64	Pulsating flame propagation of PMMA particle cloud in microgravity. Proceedings of the Combustion Institute, 1998, 27, 2675-2681.	0.3	21
65	A study of cylindrical premixed flames with heat loss. Combustion and Flame, 1989, 76, 89-105.	2.8	18
66	Flame propagation of n-decane spray in microgravity. Proceedings of the Combustion Institute, 2002, 29, 2621-2626.	2.4	18
67	Experimental and Numerical Study of NH ₃ /CH ₄ Counterflow Premixed and Non-premixed Flames for Various NH ₃ Mixing Ratios. Combustion Science and Technology, 2021, 193, 2872-2889.	1.2	14
68	Flame propagation experiment of PMMA particle cloud in a microgravity environment. Proceedings of the Combustion Institute, 1994, 25, 1693-1699.	0.3	13
69	Droplet combustion in presence of airstream oscillation: Mechanisms of enhancement and hysteresis of burning rate in microgravity at elevated pressure. Combustion and Flame, 2010, 157, 91-105.	2.8	13
70	Liquid ammonia spray combustion in two-stage micro gas turbine combustors at 0.25 MPa; Relevance of combustion enhancement to flame stability and NOx control. Applications in Energy and Combustion Science, 2021, 7, 100038.	0.9	12
71	A study on the extinction of a stretched cylindrical premixed flame 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1986, 52, 3811-3817.	0.2	11
72	Effects Of Equivalence Ratio On the Extinction Stretch Rate Of Cylindrical Premixed Flames. Combustion Science and Technology, 1993, 89, 253-263.	1.2	11

#	Article	IF	CITATIONS
73	A lean flammability limit of polymethylmethacrylate particle-cloud in microgravity. Combustion and Flame, 1999, 118, 359-369.	2.8	11
74	Heat and mass transfer of a fuel droplet evaporating in oscillatory flow. International Journal of Heat and Fluid Flow, 2009, 30, 729-740.	1.1	11
75	Microgravity experiments of single droplet combustion in oscillatory flow at elevated pressure. Proceedings of the Combustion Institute, 2009, 32, 2171-2178.	2.4	11
76	The effects of radiation on the dynamic behavior of cellular premixed flames generated by intrinsic instability. Proceedings of the Combustion Institute, 2011, 33, 1153-1162.	2.4	11
77	Stabilization mechanisms of an ammonia/methane non-premixed jet flame up to liftoff. Combustion and Flame, 2021, 234, 111657.	2.8	11
78	Numerical and experimental study of product gas characteristics in premixed ammonia/methane/air laminar flames stabilised in a stagnation flow. Fuel Communications, 2022, 10, 100054.	2.0	11
79	Droplet combustion experiments in varying forced convection using microgravity environment. International Journal of Heat and Fluid Flow, 2005, 26, 914-921.	1.1	10
80	On the validity of quasi-steady assumption in transient droplet combustion. Combustion and Flame, 2009, 156, 99-105.	2.8	10
81	Turbulent combustion characteristics of premixed gases in a packed pebble bed at high pressure. Proceedings of the Combustion Institute, 2011, 33, 1639-1646.	2.4	10
82	Numerical and Experimental Studies of Injection Modeling for Supersonic Flame-Holding. Journal of Propulsion and Power, 2005, 21, 504-511.	1.3	9
83	Effect of the Location of an Incident Shock Wave on Combustion and Flow Field of Wall Fuel-Injection. Transactions of the Japan Society for Aeronautical and Space Sciences, 2008, 51, 170-175.	0.4	9
84	Bifurcations of stretched premixed flame stabilized by a hot wall. Proceedings of the Combustion Institute, 2009, 32, 1367-1374.	2.4	9
85	NH3 combustion using three-layer stratified fuel injection for a large two-stroke marine engine: Experimental verification of the concept. Applications in Energy and Combustion Science, 2022, 10, 100071.	0.9	9
86	Numerical Study of Radiation Effects on Polypropylene Combustion Using High-temperature Oxidizer Diluted with H2O and CO2. Journal of Thermal Science and Technology, 2008, 3, 167-178.	0.6	8
87	An experimental study on particle-cloud flames in a microgravity field. Proceedings of the Combustion Institute, 1996, 26, 1369-1375.	0.3	7
88	Effects of Turbulence on Flame Structure and NOx Emission of Turbulent Jet Non-Premixed Flames in High-Temperature Air Combustion. JSME International Journal Series B, 2005, 48, 286-292.	0.3	7
89	Effects of the Unburned-Gas Temperature and Lewis Number on the Intrinsic Instability of High-Temperature Premixed Flames. Journal of Thermal Science and Technology, 2011, 6, 376-390.	0.6	7
90	Experimental Study on Polymer Pyrolysis in High-Temperature Air Diluted by H ₂ O and CO ₂ Using Stagnation-Point Flow. Combustion Science and Technology, 2012, 184, 735-749.	1.2	7

HIDEAKI KOBAYASHI

#	Article	IF	CITATIONS
91	Intrinsic Instability of Three-Dimensional Premixed Flames Under Low- and High-Temperature Conditions: Effects of Unburned-Gas Temperature on Hydrodynamic and Diffusive-Thermal Instabilities. Combustion Science and Technology, 2015, 187, 1167-1181.	1.2	7
92	Dimensional effects of nozzle-type burner on flow fields and extinction of counterflow twin flames 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1991, 57, 1141-1146.	0.2	6
93	Development of an Ethanol Reduced Kinetic Mechanism Based on the Quasi-Steady State Assumption and Feasibility Evaluation for Multi-Dimensional Flame Analysis. Journal of Thermal Science and Technology, 2010, 5, 189-199.	0.6	6
94	Quantitative measurement of temperature in oxygen enriched CH4/O2/N2 premixed flames using Laser Induced Thermal Grating Spectroscopy (LITGS) up to 1.0†MPa. Proceedings of the Combustion Institute, 2019, 37, 1427-1434.	2.4	6
95	Dynamic Behavior of Premixed Flames Propagating in Non-Uniform Velocity Fields —Assessment of Intrinsic Instability in Turbulent Combustion—. Transactions of the Japan Society for Aeronautical and Space Sciences, 2009, 51, 244-251.	0.4	6
96	A study of flame spread along a droplet array at elevated pressures up to a supercritical pressure. International Journal of Energy Research, 1999, 23, 813-826.	2.2	5
97	A Study of Interaction between Shock Wave and Cross-Flow Jet Using Particle Tracking Velocimetry. Transactions of the Japan Society for Aeronautical and Space Sciences, 2009, 52, 81-88.	0.4	5
98	Numerical Analysis of Extremely-rich CH4/O2/H2O Premixed Flames at High Pressure and High Temperature Considering Production of Higher Hydrocarbons. Journal of Thermal Science and Technology, 2010, 5, 109-123.	0.6	5
99	Application of OH(2,0) Band Excitation Planar Laser-Induced Fluorescence to High-Pressure H ₂ /O ₂ Jet Flames for Rocket Combustion. Transactions of the Japan Society for Aeronautical and Space Sciences, 2017, 60, 116-123.	0.4	5
100	Development and verification of a supersonic nozzle with a rectangular cross section at a Mach number of 2.8 for a scramjet model combustor. Journal of Thermal Science and Technology, 2018, 13, JTST0032-JTST0032.	0.6	5
101	Study of the Combined Effect of Ammonia Addition and Air Coflow Velocity on a Non-premixed Methane Jet Flame Stabilization. Combustion Science and Technology, 2022, 194, 1747-1767.	1.2	5
102	Combustion Characteristics of a Cavity Flameholder with a Burned-Gas Injector at the Cavity Bottom Wall in a Scramjet Model Combustor. Transactions of the Japan Society for Aeronautical and Space Sciences, 2020, 63, 160-171.	0.4	5
103	Effects of Incident Shockwave on Flame-holding Downstream of Ramp Injector in Supersonic Flow. Transactions of the Japan Society for Aeronautical and Space Sciences, 2016, 59, 64-70.	0.4	4
104	Total temperature estimation of a hydrogen/air burned-gas torch igniter for a scramjet combustor. Journal of Thermal Science and Technology, 2018, 13, JTST0030-JTST0030.	0.6	4
105	Development of a water-cooled multi-hole calibration burner for optical measurements of flames with high pressures and temperatures. Journal of Thermal Science and Technology, 2018, 13, JTST0001-JTST0001.	0.6	4
106	OH planar laser-induced fluorescence measurement for H ₂ /O ₂ jet diffusion flames in rocket combustion condition up to 7.0 MPa. Journal of Thermal Science and Technology, 2019, 14, JTST0018-JTST0018.	0.6	4
107	Sooting Limit of a Droplet Flame. Combustion Science and Technology, 1991, 78, 19-31.	1.2	3
108	Microgravity Ignition Experiment on a Droplet Array in High-Temperature Low-Speed Airflow. Combustion Science and Technology, 2000, 153, 169-178.	1.2	3

#	Article	IF	CITATIONS
109	Micro Gas Turbine Firing Ammonia. , 2016, , .		3
110	Success of Ammonia-Fired, Regenerator-Heated, Diffusion Combustion Gas Turbine Power Generation and Prospect of Low NOx Combustion With High Combustion Efficiency. , 2017, , .		3
111	Novel dilution sampling method for gas analysis with a low sampling rate. Mechanical Engineering Journal, 2020, 7, 19-00193-19-00193.	0.2	3
112	Structures and Stability of Lifted Combustion Zones in Preheated Oxidizer JSME International Journal Series B, 2002, 45, 499-505.	0.3	2
113	Characteristics of Pyrolysis and Combustion of Polymers in Stagnation-Point Flow for Preheated and Diluted Air with H2O and CO2. Combustion Science and Technology, 2008, 181, 159-175.	1.2	2
114	Thermal-drag and Transition from Quasi-steady to Highly-unsteady Combustion of a Fuel Droplet in the Presence of Upstream Velocity Oscillations. Flow, Turbulence and Combustion, 2010, 84, 97-123.	1.4	2
115	Numerical Study on the Intrinsic Instability of High-Temperature Premixed Flames under the Conditions of Constant Density and Constant Pressure in the Unburned Gas. Journal of Fluid Science and Technology, 2013, 8, 233-246.	0.2	2
116	Unstable behaviors of cellular premixed flames caused by hydrodynamic and diffusive-thermal instabilities under high- and low-temperature environment. Transactions of the JSME (in Japanese), 2016, 82, 15-00522-15-00522.	0.1	2
117	Evaporation and Mixing Promotion and Combustion of Liquid Fuel by Air Bubble Blowing 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1993, 59, 3974-3980.	0.2	1
118	Flame spread behaviour of blended fuel droplet array. International Journal of Energy Research, 1999, 23, 1305-1312.	2.2	1
119	Numerical Simulation of Combustion Behavior in JFE Hyper 21 Stoker System (Creation of Entire) Tj ETQq1 1 0.7 Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2013, 79, 772-776.	'84314 rgl 0.2	BT /Overlock
120	Operation and Flame Observation of Micro Gas Turbine Firing Ammonia. , 2017, , .		1
121	The effects of unburned-gas temperature on the characteristics of cellular premixed flames generated by hydrodynamic and diffusive-thermal instabilities in large space: fractal dimension of cellular-flame fronts. Journal of Thermal Science and Technology, 2017, 12, JTST0015-JTST0015.	0.6	1
122	NOx Reduction in a Swirl Combustor Firing Ammonia for a Micro Gas Turbine. , 2018, , .		1
123	Flow Field and Combustion Field Control Using Pylons Installed Upstream of a Cavity in Supersonic Flow. Transactions of the Japan Society for Aeronautical and Space Sciences, 2020, 63, 50-61.	0.4	1
124	Sooting limit of a double diffusion flame 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1989, 55, 1979-1984.	0.2	0
125	Research of Combustion Phenomena in a High-Pressure Environment 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2000, 66, 1257-1263.	0.2	0
126	High-Pressure Combustion Phenomena. , 2007, , 893.		0

High-Pressure Combustion Phenomena., 2007,, 893. 126

#	Article	IF	CITATIONS
127	"On the validity of quasi-steady assumption in transient droplet combustion―[Combust. Flame Vol. 155, Issue 3]. Combustion and Flame, 2008, 155, 409.	2.8	0
128	Numerical Simulation of Combustion Behavior in JFE Hyper 21 Stoker System. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2012, 78, 1012-1016.	0.2	0
129	Investigation of surface-acoustic-wave atomization using phase Doppler anemometry. , 2015, , .		0
130	Three-dimensional cellular premixed flames generated by hydrodynamic and diffusive-thermal instabilities (Effects of unburned-gas temperature and heat loss). Transactions of the JSME (in) Tj ETQq0 0 0 rgB1	0verloc	2 1 0 Tf 50 61
131	Experimental Study on Polymer Pyrolysis in High-Temperature Air Diluted by H2O and CO2 Using Stagnation-Point Flow. , 2011, , .		0

132	Combustion Mechanism Downstream of a Cavity Flameholder Interacting with an Incident Shock Wave in Supersonic Flow. Journal of the Japan Society for Aeronautical and Space Sciences, 2016, 64, 97-103.	0.0	0
-----	---	-----	---