Ping Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4162454/publications.pdf

Version: 2024-02-01

75	898	16	23
papers	citations	h-index	g-index
76	76	76	701
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cs ₂ CO ₃ -Promoted [3 + 2] Cyclization of Chalcone and <i>N</i> -Tosylhydrazone. Polycyclic Aromatic Compounds, 2023, 43, 3827-3839.	2.6	O
2	Pd-Catalyzed direct C–H arylation of pyrrolo[1,2-a]quinoxalines. Organic and Biomolecular Chemistry, 2022, , .	2.8	8
3	Cu-catalyzed direct C1–H trifluoromethylation of pyrrolo[1,2-a]quinoxalines. Tetrahedron, 2022, 105, 132610.	1.9	7
4	One-Pot Two-Step Strategy for Efficient Synthesis of 3-Aryl-4-(arylthio)-1 <i>H</i> -pyrazol-5-amines Derivatives. Chinese Journal of Organic Chemistry, 2022, 42, 226.	1.3	6
5	Iodineâ€Promoted Tandem Pyrazole Annulation and Câ^'H Sulfenylation for the Synthesis of C4â€6ulfenylated Pyrazoles. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
6	C4-Sulfenylation of 4-iodine-1H-pyrazole-5-amine with arylsulfonyl hydrazide in water. Molecular Catalysis, 2022, 528, 112485.	2.0	3
7	Copper-promoted C1â^H amination of pyrrolo[1,2-a]quinoxaline with Nâ€fluorobenzenesulfonimide. Journal of Molecular Structure, 2022, 1267, 133636.	3.6	3
8	Selective transformations of 2-(p-toluenesulfonyl)-N-tosylhydrazones to substituted 1,2,3-thiadiazoles. Tetrahedron, 2021, 78, 131803.	1.9	10
9	Highly selective C3–H iodination of pyrrolo[1,2- <i>a</i>]quinoxalines. Organic and Biomolecular Chemistry, 2021, 19, 5191-5196.	2.8	13
10	Synthesis of novel 4-substituted 1,2,3-thiadiazoles via iodine-catalyzed cyclization reactions. Tetrahedron Letters, 2021, 66, 152824.	1.4	6
11	Pdâ€Catalyzed N â€Arylations of 3â€Arylâ€1â€tosylâ€1 H â€pyrazolâ€5â€amines with Arylbromides and the Mig Group. ChemCatChem, 2021, 13, 2641-2652.	gration of	Ts ₆
12	Cu-catalyzed direct $C1\hat{a}^{-1}H$ difluoromethylation of pyrrolo[1,2-a]quinoxalines. Molecular Catalysis, 2021, 511, 111747.	2.0	13
13	TBAI-catalyzed ring-opening sulfonylations of benzothiazoles and arylsulfonyl hydrazides. Green Synthesis and Catalysis, 2021, 2, 381-384.	6.8	12
14	NIS-promoted three-component reaction of 3-oxo-3-arylpropanenitriles with arylsulfonyl hydrazides. Organic and Biomolecular Chemistry, 2021, 19, 3932-3939.	2.8	19
15	Solvent Mediated Selective Câ€"H Bond Iodination of Pyrrolo[1,2- <i>a</i>]quinoxaline. Chinese Journal of Organic Chemistry, 2021, 41, 4789.	1.3	6
16	The effect of amine on the tribological properties and hydrolytic stability of borate ester additives. Research on Chemical Intermediates, 2020, 46, 1283-1295.	2.7	6
17	Sulfenylation of Arenes with Ethyl Arylsulfinates in Water. ACS Omega, 2020, 5, 18515-18526.	3.5	20
18	Cyano-functionalized small-molecule acceptors for high-efficiency wide-bandgap organic solar cells. Journal of Materials Chemistry C, 2020, 8, 9195-9200.	5.5	7

#	Article	IF	CITATIONS
19	A novel and robust heterogeneous Cu catalyst using modified lignosulfonate as support for the synthesis of nitrogen-containing heterocycles. Beilstein Journal of Organic Chemistry, 2020, 16, 2888-2902.	2.2	7
20	Three-component reactions of aromatic amines, 1,3-dicarbonyl compounds, and \hat{l} ±-bromoacetaldehyde acetal to access <i>N</i> -(hetero)aryl-4,5-unsubstituted pyrroles. Beilstein Journal of Organic Chemistry, 2020, 16, 2920-2928.	2.2	2
21	Palladiumâ€Catalyzed Olefination of <i>N</i> â€Tosylhydrazones as <i>β</i> â€Diazo Phosphonate Precursors with Arylhalides. European Journal of Organic Chemistry, 2020, 2020, 5857-5861.	2.4	8
22	NCS-promoted thiocyanation and selenocyanation of pyrrolo[1,2-a]quinoxalines. Organic and Biomolecular Chemistry, 2020, 18, 9088-9094.	2.8	24
23	HI/DMSOâ€Catalyzed Cyclization of Aryl(sulfo)acylhydrazones with Sulfur. ChemistrySelect, 2020, 5, 5497-5500.	1.5	8
24	I2/DMSO-Catalyzed Transformation of N-tosylhydrazones to 1,2,3-thiadiazoles. Frontiers in Chemistry, 2020, 8, 466.	3.6	17
25	Pdâ€Catalyzed Regioselective Olefination of N â€Tosylhydrazones with Benzyl Bromides. ChemistrySelect, 2020, 5, 7396-7399.	1.5	5
26	KI/TBHP-promoted [3 + 2] cycloaddition of pyrrolo[1,2- <i>a</i>]quinoxalines and <i>N</i> -arylsulfonylhydrazones. Organic and Biomolecular Chemistry, 2020, 18, 3360-3366.	2.8	23
27	Synthesis of 9-biarylfluorenes by one-pot, three-step reactions of <i>N</i> -tosylhydrazones, <i>p</i> -bromobenzeneboronic acid, and arylboronic acids. Journal of Chemical Research, 2019, 43, 268-273.	1.3	2
28	Synthesis of 4â€Arylâ€1,2,3â€Thiadiazoles via NH 4 lâ€Catalyzed Cyclization of N â€Tosylhydrazones with Sulfur. ChemistrySelect, 2019, 4, 10587-10590.	1.5	8
29	NH4I/1,10-phenanthroline catalyzed direct sulfenylation of N-heteroarenes with ethyl arylsulfinates. Tetrahedron, 2019, 75, 130664.	1.9	27
30	Facial synthesis of sulfinic esters via copper-catalyzed reaction of sulfonyl hydrazides with alcohols in air. Journal of Saudi Chemical Society, 2019, 23, 1102-1108.	5.2	9
31	Sequentially Formations of Csp 3 â€Csp 2 and Csp 2 â€Csp 2 Bonds by a Oneâ€pot Reaction Involving N â€Tosylhydrazone and p â€Bromobenzeneboronic Acid. ChemistrySelect, 2019, 4, 4496-4498.	1.5	6
32	Cascade Reaction of Arylboronic Acids and 2′-Cyano-biaryl-2-aldehyde <i>N</i> -Tosylhydrazones: Access to Functionalized 9-Amino-10-arylphenanthrenes. Journal of Organic Chemistry, 2019, 84, 204-215.	3.2	32
33	Cu-catalyzed direct C-H thiolation of electron-rich arenes with arylsulfonyl hydrazides. Tetrahedron, 2018, 74, 1513-1519.	1.9	28
34	Highly Selective β â€Hydride Elimination in the Pdâ€Catalyzed Crossâ€Coupling of N â€Tosylhydrazones with Benzyl Bromides. ChemistrySelect, 2018, 3, 900-903.	1.5	14
35	Synthesis of benzocycloalkene derivatives via Pd-catalyzed one-pot two-step reactions of benzocyclic ketones, tosylhydrazide with aryl bromides. Journal of Saudi Chemical Society, 2018, 22, 930-936.	5.2	7
36	Synthesis of $<$ font $>$ $\hat{l}\pm<$ /font>-arylalkylferrocenes through cesium fluoride-promoted coupling of arylboronic acids with $<$ i> $>$ N-tosylhydrazones. Synthetic Communications, 2018, 48, 921-928.	2.1	5

#	Article	IF	Citations
37	The fast and efficient KI/H ₂ O ₂ mediated 2-sulfonylation of indoles and <i>N</i> -methylpyrrole in water. RSC Advances, 2018, 8, 41651-41656.	3 . 6	22
38	Synthesis of 3-Aryl-1-Indanones via CsF-Promoted Coupling of Arylboronic Acids with N-Tosylhydrazones. Journal of Chemical Research, 2018, 42, 40-43.	1.3	8
39	Pd-Catalyzed, Highly Selective C(sp2)-Br Bond Coupling Reactions of o-(or m-, or p-) Chloromethyl Bromobenzene with Arylboronic Acids. Molecules, 2018, 23, 433.	3.8	3
40	Pdâ€Catalyzed Chemoselective Suzukiâ€Miyaura Reactions of 1â€Bromoâ€4â€(halomethyl)naphthalene. ChemistrySelect, 2018, 3, 5002-5004.	1.5	4
41	Synthesis of 1,2-Diarylethylenes by Pd-Catalyzed One-Pot Reaction of Benzyl Halides, Tosylhydrazide, and Aryl Aldehydes. Letters in Organic Chemistry, 2018, 15, 709-715.	0.5	5
42	Pd(0)â€Catalyzed Tandem Oneâ€Pot Reaction of Biphenyl Ketones/Aldehydes to the Corresponding Diâ€substituted Aryl Olefins. Chinese Journal of Chemistry, 2017, 35, 1141-1148.	4.9	15
43	One-pot reductive coupling reactions of acetyl naphthalene derivatives, tosylhydrazide, with arylboronic acids. Tetrahedron, 2017, 73, 785-793.	1.9	19
44	Synthesis of naphthyl-substituted terminal olefins via Pd-Catalyzed one-pot coupling of acetylnaphthalene, N -Tosylhydrazide with aryl halide. Tetrahedron, 2017, 73, 6558-6563.	1.9	15
45	Cu(<scp>II</scp>)â€Catalyzed Ligandâ€Free Oxidation of Diarylmethanes and Second Alcohols in Water. Chinese Journal of Chemistry, 2017, 35, 1391-1395.	4.9	15
46	Water-soluble (salicyladimine) < sub>2 < /sub>Cu complex as an efficient and renewable catalyst for Michael addition of indoles to nitroolefins in water. Synthetic Communications, 2017, 47, 211-216.	2.1	3
47	Inside Back Cover: Cu(<scp>II</scp>)â€Catalyzed Ligandâ€Free Oxidation of Diarylmethanes and Second Alcohols in Water (Chin. J. Chem. 9/2017). Chinese Journal of Chemistry, 2017, 35, 1477-1477.	4.9	0
48	Multi-Component One-Pot Reaction of Aromatic Carbonyl Compounds, Tosylhydrazide, and Arylboronic Acids. Molecules, 2017, 22, 2168.	3.8	9
49	A Simple, Mild and Efficient Oxidation of Benzylic Alcohols in the Presence of NBS/KOAc in Aqueous Solution. Letters in Organic Chemistry, 2017, 14, .	0.5	2
50	Metal-free Reductive Coupling of Biphenyl Tosylhydrazones with Phenols or Benzyl Alcohols. Letters in Organic Chemistry, 2017, 14, .	0.5	1
51	Synthesis of Novel 1,4-Substituted 1,2,3-Triazoles by Water-Soluble (Salicyladimine) ₂ Cu Complex Catalyzed Azide-Alkyne Cycloaddition in Water. Letters in Organic Chemistry, 2017, 14, .	0.5	2
52	Effect of Cu+/Cu2+ Ratio on the Catalytic Behavior of Anhydrous Nieuwland Catalyst during Dimerization of Acetylene. Catalysts, 2016, 6, 120.	3.5	38
53	Oneâ€Pot Synthesis of Triarylmethanes via Metalâ€Free Reductive Coupling of Diaryl Ketones, Tosylhydrazide, and Arylboronic Acids. Chinese Journal of Chemistry, 2016, 34, 1033-1038.	4.9	22
54	Metal-free oxidation of secondary benzylic alcohols using aqueous TBHP. Synthetic Communications, 2016, 46, 1747-1758.	2.1	9

#	Article	IF	CITATIONS
55	Synthesis of Unsymmetrical 1,3â€Diynes via Pd/Cuâ€Catalyzed Crossâ€Coupling of Terminal Alkynes at Room Temperature. Chinese Journal of Chemistry, 2016, 34, 895-900.	4.9	5
56	Highly selective copperâ€catalyzed oxidation of benzyl alcohols to aromatic aldehydes in water at room temperature. Applied Organometallic Chemistry, 2016, 30, 577-580.	3.5	16
57	Synthesis of symmetrical terphenyl derivatives by PdCl2-catalyzed Suzuki–Miyaura reaction of dibromobenzene using 3-(diphenylphosphino)propanoic acid as a ligand. Synthetic Communications, 2016, 46, 154-159.	2.1	7
58	3â€(Diphenylphosphino)propanoic acid: an efficient ligand for the Pd/Cuâ€catalyzed homoâ€coupling of terminal alkynes in the presence of oxygen at room temperature. Applied Organometallic Chemistry, 2015, 29, 736-738.	3.5	8
59	Efficient Copperâ€Catalyzed Annulation of 2â€Formylazoles with 2â€Haloanilines for the Synthesis of Pyrrole†and Imidazoleâ€Fused Quinoxalines. Chinese Journal of Chemistry, 2015, 33, 589-593.	4.9	18
60	Oneâ€pot synthesis of polyfluoroterphenyls via palladiumâ€catalyzed Suzuki–Miyaura coupling of chlorobromobenzene and CH bond functionalization of perfluoroarenes. Applied Organometallic Chemistry, 2015, 29, 50-56.	3.5	4
61	An Efficient Copperâ€Catalyzed Oneâ€Pot Synthesis of 1â€Arylâ€1,2,3â€triazoles from Arylboronic Acids in Wate under Mild Conditions. Chinese Journal of Chemistry, 2015, 33, 1317-1320.	r 4.9	14
62	Synthesis of Terphenyl Derivatives by Pdâ€Catalyzed Suzukiâ€Miyaura Reaction of Dibromobenzene Using 2N2Oâ€Salen as a Ligand in Aqueous Solution. Chinese Journal of Chemistry, 2015, 33, 1189-1193.	4.9	7
63	A simple and efficient synthesis of 9-arylfluorenes via metal-free reductive coupling of arylboronic acids and N-tosylhydrazones in situ. RSC Advances, 2015, 5, 63726-63731.	3.6	32
64	A simple and efficient 2N2O–Cu(II) complex as a catalyst for Nâ€arylation of imidazoles in water. Applied Organometallic Chemistry, 2015, 29, 468-470.	3.5	9
65	Water-soluble salen–Pd complex as an efficient catalyst for Suzuki–Miyaura reaction of sterically hindered substrates in pure water. Tetrahedron, 2015, 71, 7985-7989.	1.9	26
66	2-Pyrrolecarbaldiminato $\hat{a}\in Cu(\langle scp\rangle ii\langle scp\rangle)$ complex catalyzed three-component 1,3-dipolar cycloaddition for 1,4-disubstituted 1,2,3-triazoles synthesis in water at room temperature. RSC Advances, 2015, 5, 6661-6665.	3.6	33
67	Palladiumâ€catalyzed direct arylation of polyfluoroarene and facile synthesis of liquid crystal compounds. Applied Organometallic Chemistry, 2014, 28, 180-185.	3.5	12
68	3-(Diphenylphosphino)propanoic acid: An efficient ligand for the Cu-catalyzed N-arylation of imidazoles and 1H-pyrazole with aryl halides. Chinese Chemical Letters, 2014, 25, 775-778.	9.0	14
69	Metallomicelles of palladium(II) complexes as efficient catalysts for the Suzuki–Miyaura reaction in neat water. Applied Organometallic Chemistry, 2013, 27, 494-498.	3.5	14
70	A rapid and efficient catalysis system for the synthesis of 4â€vinylbiphenyl derivatives. Applied Organometallic Chemistry, 2013, 27, 707-710.	3.5	6
71	A Simple and Efficient Copper(II) Complex as a Catalyst for <i>N</i> â€Arylation of Imidazoles. Chinese Journal of Chemistry, 2013, 31, 267-270.	4.9	15
72	Bis(imino)pyridine palladium(II) complexes as efficient catalysts for the Suzuki–Miyaura reaction in water. Applied Organometallic Chemistry, 2010, 24, 131-134.	3.5	16

Ping Liu

#	Article	IF	CITATIONS
73	Preparation and catalytic properties of bis(imino)pyridine palladium(II) complexes as efficient catalysts for Suzuki crossâ€coupling reaction in water. Applied Organometallic Chemistry, 2009, 23, 135-139.	3.5	31
74	Bis(imino)pyridine palladium(II) complexes: Synthesis, structure and catalytic activity. Journal of Organometallic Chemistry, 2009, 694, 2290-2294.	1.8	33
75	TBAI-mediated sulfenylation of polysubstituted 1H-pyrazol-5-amine and arylsulfonyl hydrazide. Synthesis, 0, , .	2.3	6