
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4162343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of chloroplast translation as a new target for herbicides. RSC Chemical Biology, 2022, 3, 37-43.	2.0	4
2	The mitochondrial <scp>LYR</scp> protein <scp>SDHAF1</scp> is required for succinate dehydrogenase activity in Arabidopsis. Plant Journal, 2022, 110, 499-512.	2.8	6
3	Proteolytic regulation of mitochondrial oxidative phosphorylation components in plants. Biochemical Society Transactions, 2022, 50, 1119-1132.	1.6	3
4	The mitochondrial AAA protease FTSH3 regulates Complex I abundance by promoting its disassembly. Plant Physiology, 2021, 186, 599-610.	2.3	8
5	The dual-targeted prolyl aminopeptidase PAP1 is involved in proline accumulation in response to stress and during pollen development. Journal of Experimental Botany, 2021, , .	2.4	7
6	A mitochondrial prolyl aminopeptidase PAP2 releases Nâ€ŧerminal proline and regulates proline homeostasis during stress response. Plant Journal, 2020, 104, 1182-1194.	2.8	7
7	Current status of the multinational Arabidopsis community. Plant Direct, 2020, 4, e00248.	0.8	13
8	Mitochondrial CLPP2 Assists Coordination and Homeostasis of Respiratory Complexes. Plant Physiology, 2020, 184, 148-164.	2.3	26
9	An interstitial peptide is readily processed from within seed proteins. Plant Science, 2019, 285, 175-183.	1.7	0
10	A Mitochondrial LYR Protein Is Required for Complex I Assembly. Plant Physiology, 2019, 181, 1632-1650.	2.3	22
11	The peptidases involved in plant mitochondrial protein import. Journal of Experimental Botany, 2019, 70, 6005-6018.	2.4	23
12	Plant <i>i</i> - AAA protease controls the turnover of the essential mitochondrial protein import component. Journal of Cell Science, 2018, 131, .	1.2	30
13	Isolation and Respiratory Measurements of Mitochondria from Arabidopsis thaliana . Journal of Visualized Experiments, 2018, , .	0.2	11
14	A Common Peptidolytic Mechanism for Targeting Peptide Degradation in Mitochondria and Chloroplasts. Molecular Plant, 2018, 11, 342-345.	3.9	16
15	Accumulation of endogenous peptides triggers a pathogen stress response in <i>Arabidopsis thaliana</i> . Plant Journal, 2018, 96, 705-715.	2.8	18
16	Plant mitochondrial protein import: the ins and outs. Biochemical Journal, 2018, 475, 2191-2208.	1.7	43
17	An Assembly Factor Promotes Assembly of Flavinated SDH1 into the Succinate Dehydrogenase Complex. Plant Physiology, 2018, 177, 1439-1452.	2.3	17
18	Targeting plant <scp>DIHYDROFOLATE REDUCTASE</scp> with antifolates and mechanisms for genetic resistance. Plant Journal, 2018, 95, 727-742.	2.8	13

#	Article	IF	CITATIONS
19	A multi-step peptidolytic cascade for amino acid recovery in chloroplasts. Nature Chemical Biology, 2017, 13, 15-17.	3.9	24
20	Divergent evolution of the M3A family of metallopeptidases in plants. Physiologia Plantarum, 2016, 157, 380-388.	2.6	7
21	Plant-Specific Preprotein and Amino Acid Transporter Proteins Are Required for tRNA Import into Mitochondria. Plant Physiology, 2016, 172, 2471-2490.	2.3	27
22	<scp>MSL</scp> 1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress. Plant Journal, 2016, 88, 809-825.	2.8	82
23	Characterization of a novel β-barrel protein (AtOM47) from the mitochondrial outer membrane of <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2016, 67, 6061-6075.	2.4	19
24	Inactivation of Mitochondrial Complex I Induces the Expression of a Twin Cysteine Protein that Targets and Affects Cytosolic, Chloroplastidic and Mitochondrial Function. Molecular Plant, 2016, 9, 696-710.	3.9	28
25	MPIC: A Mitochondrial Protein Import Components Database for Plant and Non-Plant Species. Plant and Cell Physiology, 2015, 56, e10-e10.	1.5	24
26	Isolation of Intact Mitochondria from the Model Plant Species Arabidopsis thaliana and Oryza sativa. Methods in Molecular Biology, 2015, 1305, 1-12.	0.4	36
27	In Vitro and In Vivo Protein Uptake Studies in Plant Mitochondria. Methods in Molecular Biology, 2015, 1305, 61-81.	0.4	14
28	Phosphorylation and Dephosphorylation of the Presequence of Precursor MULTIPLE ORGANELLAR RNA EDITING FACTOR3 during Import into Mitochondria from Arabidopsis. Plant Physiology, 2015, 169, 1344-1355.	2.3	30
29	Evidence for interactions between the mitochondrial import apparatus and respiratory chain complexes via Tim21-like proteins in Arabidopsis. Frontiers in Plant Science, 2014, 5, 82.	1.7	16
30	The mitochondrial outer membrane <scp>AAA ATP</scp> ase At <scp>OM</scp> 66 affects cell death and pathogen resistance in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2014, 80, 709-727.	2.8	80
31	The Mitochondrial Protein Import Component, TRANSLOCASE OF THE INNER MEMBRANE17-1, Plays a Role in Defining the Timing of Germination in Arabidopsis. Plant Physiology, 2014, 166, 1420-1435.	2.3	45
32	Protein import into plant mitochondria: signals, machinery, processing, and regulation. Journal of Experimental Botany, 2014, 65, 6301-6335.	2.4	76
33	The plant mitochondrial protein import apparatus — The differences make it interesting. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1233-1245.	1.1	51
34	The dual targeting ability of type II NAD(P)H dehydrogenases arose early in land plant evolution. BMC Plant Biology, 2013, 13, 100.	1.6	24
35	How do plants make mitochondria?. Planta, 2013, 237, 429-439.	1.6	48
36	Unique components of the plant mitochondrial protein import apparatus. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 304-313.	1.9	56

#	Article	IF	CITATIONS
37	The Membrane-Bound NAC Transcription Factor ANAC013 Functions in Mitochondrial Retrograde Regulation of the Oxidative Stress Response in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 3472-3490.	3.1	293
38	Acquisition, Conservation, and Loss of Dual-Targeted Proteins in Land Plants Â. Plant Physiology, 2013, 161, 644-662.	2.3	71
39	Identification of a Dual-Targeted Protein Belonging to the Mitochondrial Carrier Family That Is Required for Early Leaf Development in Rice A Â. Plant Physiology, 2013, 161, 2036-2048.	2.3	25
40	Organellar oligopeptidase (OOP) provides a complementary pathway for targeting peptide degradation in mitochondria and chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3761-9.	3.3	50
41	A molecular link between mitochondrial preprotein transporters and respiratory chain complexes. Plant Signaling and Behavior, 2012, 7, 1594-1597.	1.2	15
42	AtPAP2 is a tail-anchored protein in the outer membrane of chloroplasts and mitochondria. Plant Signaling and Behavior, 2012, 7, 927-932.	1.2	39
43	LETM Proteins Play a Role in the Accumulation of Mitochondrially Encoded Proteins in Arabidopsis thaliana and AtLETM2 Displays Parent of Origin Effects. Journal of Biological Chemistry, 2012, 287, 41757-41773.	1.6	54
44	TGD1, -2, and -3 Proteins Involved in Lipid Trafficking Form ATP-binding Cassette (ABC) Transporter with Multiple Substrate-binding Proteins. Journal of Biological Chemistry, 2012, 287, 21406-21415.	1.6	89
45	Dual Location of the Mitochondrial Preprotein Transporters B14.7 and Tim23-2 in Complex I and the TIM17:23 Complex in <i>Arabidopsis</i> Links Mitochondrial Activity and Biogenesis. Plant Cell, 2012, 24, 2675-2695.	3.1	75
46	Evolution of Protein Import Pathways. Advances in Botanical Research, 2012, , 315-346.	0.5	1
47	The RCC1 family protein RUG3 is required for splicing of <i>nad2</i> and complex I biogenesis in mitochondria of <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 67, 1067-1080.	2.8	113
48	TCP Transcription Factors Link the Regulation of Genes Encoding Mitochondrial Proteins with the Circadian Clock in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2011, 22, 3921-3934.	3.1	164
49	An in silico analysis of the mitochondrial protein import apparatus of plants. BMC Plant Biology, 2010, 10, 249.	1.6	53
50	Conserved and Novel Functions for Arabidopsis thaliana MIA40 in Assembly of Proteins in Mitochondria and Peroxisomes. Journal of Biological Chemistry, 2010, 285, 36138-36148.	1.6	108
51	Approaches to defining dualâ€ŧargeted proteins in Arabidopsis. Plant Journal, 2009, 57, 1128-1139.	2.8	139
52	Type II NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in <i>Arabidopsis thaliana</i> . FEBS Letters, 2008, 582, 3073-3079.	1.3	97
53	Characterization of the Preprotein and Amino Acid Transporter Gene Family in Arabidopsis. Plant Physiology, 2007, 143, 199-212.	2.3	94
54	Functional Definition of Outer Membrane Proteins Involved in Preprotein Import into Mitochondria. Plant Cell, 2007, 19, 3739-3759.	3.1	146

#	Article	IF	CITATIONS
55	Oxygen Initiation of Respiration and Mitochondrial Biogenesis in Rice. Journal of Biological Chemistry, 2007, 282, 15619-15631.	1.6	79
56	Activated signal transducer and activator of transcription-3 (STAT3) is a poor regulator of tumour necrosis factor-α production by human monocytes. Clinical and Experimental Immunology, 2007, 147, 564-572.	1.1	15
57	Cloning and characterization of AtNUDT13, a novel mitochondrial <i>Arabidopsis thaliana</i> Nudix hydrolase specific for longâ€chain diadenosine polyphosphates. FEBS Journal, 2007, 274, 4877-4885.	2.2	17
58	Suppressor of cytokine signalling-3 at pathological levels does not regulate lipopolysaccharide or interleukin-10 control of tumour necrosis factor-α production by human monocytes. Immunology, 2006, 119, 8-17.	2.0	19
59	Nine 3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoA thiolases (ACATs) encoded by five genes in Arabidopsis thaliana are targeted either to peroxisomes or cytosol but not to mitochondria. Plant Molecular Biology, 2006, 63, 97-108.	2.0	98
60	Characterization of Mitochondrial Alternative NAD(P)H Dehydrogenases in Arabidopsis: Intraorganelle Location and Expression. Plant and Cell Physiology, 2006, 47, 43-54.	1.5	126
61	Adaptations Required for Mitochondrial Import following Mitochondrial to Nucleus Gene Transfer of Ribosomal Protein S10. Plant Physiology, 2005, 138, 2134-2144.	2.3	16
62	The C-terminal Region of TIM17 Links the Outer and Inner Mitochondrial Membranes in Arabidopsis and Is Essential for Protein Import. Journal of Biological Chemistry, 2005, 280, 16476-16483.	1.6	42
63	The N-terminal Cleavable Extension of Plant Carrier Proteins is Responsible for Efficient Insertion into the Inner Mitochondrial Membrane. Journal of Molecular Biology, 2005, 351, 16-25.	2.0	43
64	The N-terminal Extension of Plant Mitochondrial Carrier Proteins is Removed by Two-step Processing: The First Cleavage is by the Mitochondrial Processing Peptidase. Journal of Molecular Biology, 2004, 344, 443-454.	2.0	32
65	Identification, Expression, and Import of Components 17 and 23 of the Inner Mitochondrial Membrane Translocase from Arabidopsis,. Plant Physiology, 2003, 131, 1737-1747.	2.3	71
66	The Mitochondrial Protein Import Machinery of Plants (MPIMP) database. Nucleic Acids Research, 2003, 31, 325-327.	6.5	35
67	Protein import into plant mitochondria: precursor proteins differ in ATP and membrane potential requirements. Plant Molecular Biology, 2001, 45, 317-325.	2.0	20
68	Import of precursor proteins into mitochondria from soybean tissues during development. FEBS Letters, 1999, 464, 53-59.	1.3	30
69	Late Embryogenesis Abundant (LEA)5 Regulates Translation in Mitochondria and Chloroplasts to Enhance Growth and Stress Tolerance. Frontiers in Plant Science, 0, 13, .	1.7	10