Yves Albert DeClerck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4161574/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Tumor Microenvironment in Neuroblastoma: New Players, New Mechanisms of Interaction and New Perspectives. Cancers, 2020, 12, 2912.	1.7	37
2	Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell, 2020, 182, 1044-1061.e18.	13.5	691
3	Cancer-Associated Fibroblasts: Understanding Their Heterogeneity. Cancers, 2020, 12, 3108.	1.7	76
4	Anti-CD105 Antibody Eliminates Tumor Microenvironment Cells and Enhances Anti-GD2 Antibody Immunotherapy of Neuroblastoma with Activated Natural Killer Cells. Clinical Cancer Research, 2019, 25, 4761-4774.	3.2	53
5	The plasminogen activator inhibitor-1 paradox in cancer: a mechanistic understanding. Cancer and Metastasis Reviews, 2019, 38, 483-492.	2.7	92
6	Plasminogen Activator Inhibitor-1 Promotes the Recruitment and Polarization of Macrophages in Cancer. Cell Reports, 2018, 25, 2177-2191.e7.	2.9	92
7	Contribution of neuroblastomaâ€derived exosomes to the production of proâ€tumorigenic signals by bone marrow mesenchymal stromal cells. Journal of Extracellular Vesicles, 2017, 6, 1332941.	5.5	47
8	Sphingosine-1-Phosphate Receptor-1 Promotes Environment-Mediated and Acquired Chemoresistance. Molecular Cancer Therapeutics, 2017, 16, 2516-2527.	1.9	16
9	Conditional Knockdown of Gene Expression in Cancer Cell Lines to Study the Recruitment of Monocytes/Macrophages to the Tumor Microenvironment. Journal of Visualized Experiments, 2017, , .	0.2	3
10	Cancer-Associated Fibroblasts Share Characteristics and Protumorigenic Activity with Mesenchymal Stromal Cells. Cancer Research, 2017, 77, 5142-5157.	0.4	130
11	Paternal Risk Factors for Oral Clefts in Northern Africans, Southeast Asians, and Central Americans. International Journal of Environmental Research and Public Health, 2017, 14, 657.	1.2	8
12	Tumor-associated macrophages promote neuroblastoma via STAT3 phosphorylation and up-regulation of c-MYC. Oncotarget, 2017, 8, 91516-91529.	0.8	45
13	Fat, Calories, and Cancer. Cancer Research, 2016, 76, 509-510.	0.4	5
14	More than the genes, the tumor microenvironment in neuroblastoma. Cancer Letters, 2016, 380, 304-314.	3.2	64
15	Small Molecule Inhibitors of Plasminogen Activator Inhibitor-1 Elicit Anti-Tumorigenic and Anti-Angiogenic Activity. PLoS ONE, 2015, 10, e0133786.	1.1	38
16	Interaction between bone marrow stromal cells and neuroblastoma cells leads to a VEGFA-mediated osteoblastogenesis. International Journal of Cancer, 2015, 137, 797-809.	2.3	12
17	Plasminogen Activator Inhibitor-1 in Cancer: Rationale and Insight for Future Therapeutic Testing. Cancer Research, 2015, 75, 2969-2974.	0.4	142
18	MYCN-Dependent Expression of Sulfatase-2 Regulates Neuroblastoma Cell Survival. Cancer Research, 2014, 74, 5999-6009.	0.4	9

#	Article	IF	CITATIONS
19	Bone Marrow–Derived Mesenchymal Stromal Cells Promote Survival and Drug Resistance in Tumor Cells. Molecular Cancer Therapeutics, 2014, 13, 962-975.	1.9	58
20	Targeting the Tumor Microenvironment: From Understanding Pathways to Effective Clinical Trials. Cancer Research, 2013, 73, 4965-4977.	0.4	231
21	Critical Role of STAT3 in IL-6–Mediated Drug Resistance in Human Neuroblastoma. Cancer Research, 2013, 73, 3852-3864.	0.4	109
22	17 Mesenchymal stem cells and the tumor microenvironment. , 2013, , 331-352.		0
23	Sorafenib inhibits endogenous and IL-6/S1P induced JAK2-STAT3 signaling in human neuroblastoma, associated with growth suppression and apoptosis. Cancer Biology and Therapy, 2012, 13, 534-541.	1.5	25
24	Desmoplasia: A Response or a Niche?. Cancer Discovery, 2012, 2, 772-774.	7.7	66
25	A Galectin-3–Dependent Pathway Upregulates Interleukin-6 in the Microenvironment of Human Neuroblastoma. Cancer Research, 2012, 72, 2228-2238.	0.4	78
26	Runx2 promotes both osteoblastogenesis and novel osteoclastogenic signals in ST2 mesenchymal progenitor cells. Osteoporosis International, 2012, 23, 1399-1413.	1.3	43
27	Protumorigenic Activity of Plasminogen Activator Inhibitor-1 Through an Antiapoptotic Function. Journal of the National Cancer Institute, 2012, 104, 1470-1484.	3.0	86
28	Sorafenib inhibits endogenous and IL-6/S1P induced JAK2-STAT3 signaling in human neuroblastoma, associated with growth suppression and apoptosis. Cancer Biology and Therapy, 2012, 13, 349-357.	1.5	28
29	Microsomal prostaglandin E synthase-1 enhances bone cancer growth and bone cancer-related pain behaviors in mice. Life Sciences, 2011, 88, 693-700.	2.0	30
30	A phase I study of zoledronic acid and lowâ€dose cyclophosphamide in recurrent/refractory neuroblastoma: A new approaches to neuroblastoma therapy (NANT) study. Pediatric Blood and Cancer, 2011, 57, 275-282.	0.8	43
31	Synergistic Activity of Fenretinide and the Bcl-2 Family Protein Inhibitor ABT-737 against Human Neuroblastoma. Clinical Cancer Research, 2011, 17, 7093-7104.	3.2	34
32	Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer and Metastasis Reviews, 2010, 29, 249-261.	2.7	304
33	Stromelysin-1 (MMP-3) is a target and a regulator of Wnt1-induced epithelial-mesenchymal transition (EMT). Cancer Biology and Therapy, 2010, 10, 198-208.	1.5	37
34	Interleukin-6 in bone metastasis and cancer progression. European Journal of Cancer, 2010, 46, 1223-1231.	1.3	321
35	The Extracellular Matrix and the Growth and Survival of Tumors. , 2010, , 695-710.		0
36	Interleukin-6 in the Bone Marrow Microenvironment Promotes the Growth and Survival of Neuroblastoma Cells. Cancer Research, 2009, 69, 329-337.	0.4	164

#	Article	lF	CITATIONS
37	Vα24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. Journal of Clinical Investigation, 2009, 119, 1524-1536.	3.9	287
38	Bone Marrow Microenvironment and Tumor Progression. Cancer Microenvironment, 2008, 1, 23-35.	3.1	52
39	Plasminogen Activator Inhibitor-1 Protects Endothelial Cells from FasL-Mediated Apoptosis. Cancer Cell, 2008, 14, 324-334.	7.7	132
40	Identification of Galectin-3-binding Protein as a Factor Secreted by Tumor Cells That Stimulates Interleukin-6 Expression in the Bone Marrow Stroma. Journal of Biological Chemistry, 2008, 283, 18573-18581.	1.6	58
41	The Activity of Zoledronic Acid on Neuroblastoma Bone Metastasis Involves Inhibition of Osteoclasts and Tumor Cell Survival and Proliferation. Cancer Research, 2007, 67, 9346-9355.	0.4	40
42	The Cyclin-dependent Kinase Inhibitors p15INK4B and p21CIP1 Are Critical Regulators of Fibrillar Collagen-induced Tumor Cell Cycle Arrest. Journal of Biological Chemistry, 2007, 282, 24471-24476.	1.6	35
43	Mechanisms of invasion and metastasis in human neuroblastoma. Cancer and Metastasis Reviews, 2007, 25, 645-657.	2.7	77
44	Oncogene MYCN regulates localization of NKT cells to the site of disease in neuroblastoma. Journal of Clinical Investigation, 2007, 117, 2702-2712.	3.9	94
45	Mechanisms of pericyte recruitment in tumour angiogenesis: A new role for metalloproteinases. European Journal of Cancer, 2006, 42, 310-318.	1.3	124
46	Multimodal Imaging Analysis of Tumor Progression and Bone Resorption in a Murine Cancer Model. Journal of Computer Assisted Tomography, 2006, 30, 525-534.	0.5	27
47	Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer and Metastasis Reviews, 2006, 25, 35-43.	2.7	195
48	Matrix Metalloproteinases Play an Active Role in Wnt1-Induced Mammary Tumorigenesis. Cancer Research, 2006, 66, 2691-2699.	0.4	58
49	The Contribution of Bone Marrow–Derived Cells to the Tumor Vasculature in Neuroblastoma Is Matrix Metalloproteinase-9 Dependent. Cancer Research, 2005, 65, 3200-3208.	0.4	146
50	Considering the critical interface between tumor cells and stromal cells in the search for targets for anticancer therapy. Cancer Cell, 2005, 7, 408-409.	7.7	3
51	Bone Marrow Mesenchymal Stem Cells Provide an Alternate Pathway of Osteoclast Activation and Bone Destruction by Cancer Cells. Cancer Research, 2005, 65, 1129-1135.	0.4	73
52	Discoidin Domain Receptor 2 Mediates Tumor Cell Cycle Arrest Induced by Fibrillar Collagen. Journal of Biological Chemistry, 2005, 280, 40187-40194.	1.6	69
53	Mechanisms of bone invasion and metastasis in human neuroblastoma. Cancer Letters, 2005, 228, 203-209.	3.2	66
54	Differential Inhibition of Membrane Type 3 (MT3)-Matrix Metalloproteinase (MMP) and MT1-MMP by Tissue Inhibitor of Metalloproteinase (TIMP)-2 and TIMP-3 Regulates Pro-MMP-2 Activation. Journal of Biological Chemistry, 2004, 279, 8592-8601.	1.6	126

#	Article	IF	CITATIONS
55	Stromal Matrix Metalloproteinase-9 Regulates the Vascular Architecture in Neuroblastoma by Promoting Pericyte Recruitment. Cancer Research, 2004, 64, 1675-1686.	0.4	203
56	Focus on the cell membrane: The need for dissociation and detachment in tumoral invasion. Cancer Biology and Therapy, 2004, 3, 632-633.	1.5	0
57	The Matrix Metalloproteinase Inhibitor Prinomastat Enhances Photodynamic Therapy Responsiveness in a Mouse Tumor Model. Cancer Research, 2004, 64, 2328-2332.	0.4	99
58	TIMP-2 is released as an intact molecule following binding to MT1-MMP on the cell surface. Experimental Cell Research, 2004, 293, 164-174.	1.2	27
59	Proteases, Extracellular Matrix, and Cancer. American Journal of Pathology, 2004, 164, 1131-1139.	1.9	202
60	Gene therapy for hepatocellular carcinoma using non-viral vectors composed of bis guanidinium-tren-cholesterol and plasmids encoding the tissue inhibitors of metalloproteinases TIMP-2 and TIMP-3. Cancer Gene Therapy, 2003, 10, 435-444.	2.2	29
61	Computerized Quantification of Tissue Vascularization Using High-resolution Slide Scanning of Whole Tumor Sections. Journal of Histochemistry and Cytochemistry, 2003, 51, 151-158.	1.3	64
62	Lytic bone lesions in human neuroblastoma xenograft involve osteoclast recruitment and are inhibited by bisphosphonate. Cancer Research, 2003, 63, 3026-31.	0.4	38
63	Les métalloprotéases matricielles et leurs inhibiteurs synthétiques dans la progression tumorale. Medecine/Sciences, 2002, 18, 565-575.	0.0	8
64	Tissue Inhibitors of Metalloproteinases in Cancer. , 2002, , 169-194.		0
65	TGF-β3-induced Palatogenesis Requires Matrix Metalloproteinases. Molecular Biology of the Cell, 2001, 12, 1457-1466.	0.9	151
66	Magnetic resonance imaging for the evaluation of a novel metastatic orthotopic model of human neuroblastoma in immunodeficient mice. Clinical and Experimental Metastasis, 2000, 18, 455-461.	1.7	17
67	Tissue Inhibitor of Metalloproteinase (TIMP)-2 Acts Synergistically with Synthetic Matrix Metalloproteinase (MMP) Inhibitors but Not with TIMP-4 to Enhance the (Membrane Type) Tj ETQq1 1 0.784314	rg₿ ढ /Ove	erlaak 10 Tf 5
68	NF-Y and Sp1 Cooperate for the Transcriptional Activation and cAMP Response of Human Tissue Inhibitor of Metalloproteinases-2. Journal of Biological Chemistry, 2000, 275, 18602-18610.	1.6	44
69	Contact with fibrillar collagen inhibits melanoma cell proliferation by up-regulating p27KIP1. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 10026-10031.	3.3	161
70	Identification of the Tissue Inhibitor of Metalloproteinases-2 (TIMP-2) Binding Site on the Hemopexin Carboxyl Domain of Human Gelatinase A by Site-directed Mutagenesis. Journal of Biological Chemistry, 1999, 274, 4421-4429.	1.6	69
71	INHIBITION OF MATRIX METALLOPROTEINASES THERAPEUTIC APPLICATIONS. Tissue Inhibitors of Matrix Metalloproteinases in Cancer. Annals of the New York Academy of Sciences, 1999, 878, 108-119.	1.8	81
72	Identification of the TIMP-2 Binding Site on the Gelatinase A Hemopexin C-Domain by Site-Directed Mutagenesis and the Yeast Two-Hybrid System. Annals of the New York Academy of Sciences, 1999, 878, 747-753.	1.8	9

#	Article	IF	CITATIONS
73	Tissue inhibitors of metalloproteinases (TEMP) in invasion and proliferation. Apmis, 1999, 107, 111-119.	0.9	111
74	Urokinase induces receptor mediated brain tumor cell migration and invasion. Journal of Neuro-Oncology, 1998, 40, 215-226.	1.4	32
75	Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) Binds to the Catalytic Domain of the Cell Surface Receptor, Membrane Type 1-Matrix Metalloproteinase 1 (MT1-MMP). Journal of Biological Chemistry, 1998, 273, 1216-1222.	1.6	258
76	The C-Terminal Domain of Tissue Inhibitor of Metalloproteinases-2 Is Required for Cell Binding but Not for Antimetalloproteinase Activity. Biochemical and Biophysical Research Communications, 1997, 236, 100-105.	1.0	15
77	Establishment of Long-Termin VitroCultures of Human Ovarian Cystadenomas and LMP Tumors and Examination of Their Spectrum of Expression of Matrix-Degrading Proteinases. Gynecologic Oncology, 1997, 67, 277-284.	0.6	21
78	Proteases and Protease Inhibitors in Tumor Progression. Advances in Experimental Medicine and Biology, 1997, 425, 89-97.	0.8	102
79	Cloning and partial structure of the gene encoding human tissue inhibitor of metalloproteinases-3. Gene, 1996, 170, 287-288.	1.0	8
80	Cooperation between Matrix Metalloproteinases and the Plasminogen Activator-Plasmin System in Tumor Progression. Enzyme & Protein, 1996, 49, 72-84.	1.6	84
81	Independent regulation of matrix metalloproteinases and plasminogen activators in human fibrosarcoma cells. , 1996, 167, 333-340.		32
82	Structure and Characterization of the Human Tissue Inhibitor of Metalloproteinases-2 Gene. Journal of Biological Chemistry, 1996, 271, 25498-25505.	1.6	103
83	Purification and characterization of a collagenase inhibitor produced by bovine vascular smooth muscle cells. Archives of Biochemistry and Biophysics, 1988, 265, 28-37.	1.4	38
84	Primary central nervous system lymphoma without intracranial mass in a child diagnosis by documentation of monoclonality. Cancer, 1985, 56, 2804-2808.	2.0	30
85	Macrocytosis and Pure RBC Anemia Caused by Azathioprine. JAMA Pediatrics, 1980, 134, 377.	3.6	8
86	A fatal case of inappropriate adh secretion induced by cyclophosphamide therapy. Cancer, 1979, 44, 896-898.	2.0	76
87	Hemophilus influenzae type b infections: Recurrent disease due to ampicillin-resistant strains. Journal of Pediatrics, 1977, 90, 319-320.	0.9	12