Samantha C. Pinho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4160878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoemulsions encapsulating oregano essential oil: Production, stability, antibacterial activity and incorporation in chicken pâté. LWT - Food Science and Technology, 2017, 77, 233-240.	5.2	127
2	β-carotene-loaded liposome dispersions stabilized with xanthan and guar gums: Physico-chemical stability and feasibility of application in yogurt. LWT - Food Science and Technology, 2014, 59, 1265-1273.	5.2	124
3	Polymorphism, crystallinity and hydrophilic–lipophilic balance of stearic acid and stearic acid–capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids and Surfaces B: Biointerfaces, 2011, 86, 125-130.	5.0	112
4	Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: in vitro study and application in Minas Padrão cheese. Brazilian Journal of Microbiology, 2018, 49, 929-935.	2.0	102
5	Hybrid encapsulation structures based on β-carotene-loaded nanoliposomes within electrospun fibers. Colloids and Surfaces B: Biointerfaces, 2015, 134, 475-482.	5.0	88
6	Rheology of Emulsion-Filled Gels Applied to the Development of Food Materials. Gels, 2016, 2, 22.	4.5	75
7	Curcumin-loaded nanoemulsions produced by the emulsion inversion point (EIP) method: An evaluation of process parameters and physico-chemical stability. Journal of Food Engineering, 2016, 169, 1-9.	5.2	74
8	Liposomes encapsulating betaâ€carotene produced by the proliposomes method: characterisation and shelf life of powders and phospholipid vesicles. International Journal of Food Science and Technology, 2013, 48, 274-282.	2.7	72
9	Rheological and mechanical characterization of curcumin-loaded emulsion-filled gels produced with whey protein isolate and xanthan gum. LWT - Food Science and Technology, 2017, 86, 166-173.	5.2	72
10	Characterization of lyophilized liposomes produced with non-purified soy lecithin: a case study of casein hydrolysate microencapsulation. Brazilian Journal of Chemical Engineering, 2012, 29, 325-335.	1.3	67
11	Encapsulation of quercetin in liposomes by ethanol injection and physicochemical characterization of dispersions and lyophilized vesicles. Food Bioscience, 2017, 19, 17-25.	4.4	57
12	Liposomes incorporating essential oil of Brazilian cherry (<i>Eugenia uniflora</i> L.): Characterization of aqueous dispersions and lyophilized formulations. Journal of Microencapsulation, 2010, 27, 416-425.	2.8	50
13	Stability of curcumin encapsulated in solid lipid microparticles incorporated in cold-set emulsion filled gels of soy protein isolate and xanthan gum. Food Research International, 2017, 102, 759-767.	6.2	47
14	Structural characterization of multilamellar liposomes coencapsulating curcumin and vitamin D3. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 549, 112-121.	4.7	43
15	Technological and sensory evaluation of pineapple iceÂcreams incorporating curcuminâ€loaded nanoemulsions obtained by the emulsion inversion point method. International Journal of Dairy Technology, 2018, 71, 491-500.	2.8	38
16	Hydrophilic coating of mitotane-loaded lipid nanoparticles: Preliminary studies for mucosal adhesion. Pharmaceutical Development and Technology, 2013, 18, 577-581.	2.4	37
17	Physico-chemical stability and inÂvitro digestibility of beta-carotene-loaded lipid nanoparticles of cupuacu butter (Theobroma grandiflorum) produced by the phase inversion temperature (PIT) method. Journal of Food Engineering, 2017, 192, 93-102.	5.2	37
18	Curcumin-loaded proliposomes produced by the coating of micronized sucrose: Influence of the type of phospholipid on the physicochemical characteristics of powders and on the liposomes obtained by hydration. Food Chemistry, 2019, 291, 7-15.	8.2	35

SAMANTHA C. PINHO

#	Article	IF	CITATIONS
19	Essential Oils as Active Ingredients of Lipid Nanocarriers for Chemotherapeutic Use. Current Pharmaceutical Biotechnology, 2015, 16, 365-370.	1.6	34
20	Co-encapsulation of curcumin and vitamin D3 in mixed phospholipid nanoliposomes using a continuous supercritical CO2 assisted process. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132, 104120.	5.3	31
21	Influence of the agitation rate on the treatment of partially soluble wastewater in anaerobic sequencing batch biofilm reactor. Water Research, 2004, 38, 4117-4124.	11.3	30
22	Encapsulation of Betaâ€carotene in Lipid Microparticles Stabilized with Hydrolyzed Soy Protein Isolate: Production Parameters, Alphaâ€tocopherol Coencapsulation and Stability Under Stress Conditions. Journal of Food Science, 2017, 82, 659-669.	3.1	30
23	Production, physicochemical stability of quercetin-loaded nanoemulsions and evaluation of antioxidant activity in spreadable chicken pâtés. LWT - Food Science and Technology, 2018, 98, 154-161.	5.2	30
24	Characterization and shelf life of β-carotene loaded solid lipid microparticles produced with stearic acid and sunflower oil. Brazilian Archives of Biology and Technology, 2013, 56, 663-671.	0.5	28
25	Feasibility of incorporating buriti (<i>Mauritia flexuosa</i> L.) oil nanoemulsions in isotonic sports drink. International Journal of Food Science and Technology, 2017, 52, 2201-2209.	2.7	28
26	Physicochemical characterization and sensory evaluation of yogurts incorporated with beta-carotene-loaded solid lipid microparticles stabilized with hydrolyzed soy protein isolate. Food Science and Biotechnology, 2019, 28, 59-66.	2.6	26
27	Crystallinity of Dynasan®114 and Dynasan®118 matrices for the production of stable Miglyol®-loaded nanoparticles. Journal of Thermal Analysis and Calorimetry, 2012, 108, 101-108.	3.6	23
28	Î ² -carotene and α-tocopherol coencapsulated in nanostructured lipid carriers of murumuru (<i>Astrocaryum murumuru</i>) butter produced by phase inversion temperature method: characterisation, dynamic <i>in vitro</i> digestion and cell viability study. Journal of Microencapsulation, 2019, 36, 43-52.	2.8	23
29	Characterization and evaluation of sensory acceptability of ice creams incorporated with beta-carotene encapsulated in solid lipid microparticles. Food Science and Technology, 2016, 36, 664-671.	1.7	22
30	Physico-chemical stability and structural characterization of thickened multilamellar beta-carotene-loaded liposome dispersions produced using a proliposome method. Colloid and Polymer Science, 2015, 293, 2171-2179.	2.1	20
31	Supercritical CO2 assisted process for the production of mixed phospholipid nanoliposomes: Unloaded and vitamin D3-loaded vesicles. Journal of Food Engineering, 2022, 316, 110851.	5.2	20
32	Characterisation of curcuminâ€loaded proliposomes produced by coating of micronised sucrose and hydration of phospholipid powders to obtain multilamellar liposomes. International Journal of Food Science and Technology, 2017, 52, 772-780.	2.7	19
33	Cold-Set Gelation of Commercial Soy Protein Isolate: Effects of the Incorporation of Locust Bean Gum and Solid Lipid Microparticles on the Properties of Gels. Food Biophysics, 2018, 13, 226-239.	3.0	19
34	Preparation and characterization of affinity magnetoliposomes useful for the detection of antiphospholipid antibodies. Journal of Magnetism and Magnetic Materials, 2001, 225, 101-108.	2.3	17
35	Unpurified soybean lecithins impact on the chemistry of proliposomes and liposome dispersions encapsulating vitamin D3. Food Bioscience, 2020, 37, 100700.	4.4	17
36	Modeling creep/recovery behavior of cold-set gels using different approaches. Food Hydrocolloids, 2022, 123, 107183.	10.7	17

#	Article	IF	CITATIONS
37	Treatment of wastewater from dairy plants using Anaerobic Sequencing Batch Reactor (ASBR) following by Aerobic Sequencing Batch Reactor (SBR) aiming the removal of organic matter and nitrification. Water Practice and Technology, 2012, 7, .	2.0	14
38	Wet agglomeration by high shear of binary mixtures of curcumin-loaded lyophilized liposomes and cornstarch: Powder characterization and incorporation in cakes. Food Bioscience, 2018, 25, 74-82.	4.4	14
39	Microstructural and rheological characterization of NaCl-induced gels of soy protein isolate and the effects of incorporating different galactomannans. Food Structure, 2020, 26, 100158.	4.5	13
40	Feasibility of treating partially soluble wastewater in anaerobic sequencing batch biofilm reactor (ASBBR) with mechanical stirring. Bioresource Technology, 2005, 96, 517-519.	9.6	12
41	Simplified Mathematical Model for an Anaerobic Sequencing Batch Biofilm Reactor Treating Lipid-Rich Wastewater Subject to Rising Organic Loading Rates. Environmental Engineering Science, 2009, 26, 1197-1206.	1.6	12
42	Effect of different stress conditions on the stability of quercetin-loaded lipid microparticles produced with babacu (Orbignya speciosa) oil: evaluation of their potential use in food applications. Food Science and Technology, 2016, 36, 9-17.	1.7	12
43	Effect of agitation on the performance of an anaerobic sequencing batch biofilm reactor in the treatment of dairy effluents. Water Science and Technology, 2011, 63, 995-1003.	2.5	11
44	Nanoliposomes coencapsulating curcumin and vitamin D 3 produced by hydration of proliposomes: Effects of the phospholipid composition in the physicochemical characteristics of vesicles and after incorporation in yoghurts. International Journal of Dairy Technology, 2021, 74, 107-117.	2.8	10
45	Viability of the microencapsulation of a casein hydrolysate in lipid microparticles of cupuacu butter and stearic acid. International Journal of Food Studies, 2013, 2, .	0.8	9
46	A comparison of two benchâ€scale anaerobic systems used for the treatment of dairy effluents. International Journal of Dairy Technology, 2010, 63, 290-296.	2.8	8
47	NanopartÃculas de lipÃdios sólidos: métodos clássicos de produção laboratorial. Quimica Nova, 2011, , .	0.3	7
48	Characterization, physicochemical stability, and evaluation of in vitro digestibility of solid lipid microparticles produced with palm kernel oil and tristearin. Food Science and Technology, 2014, 34, 532-538.	1.7	7
49	Microstructural Analysis of Whey/Soy Protein Isolate Mixed Gels Using Confocal Raman Microscopy. Foods, 2021, 10, 2179.	4.3	7
50	Emulsion-filled gels of soy protein isolate for vehiculation of vitamin D3: Effect of protein solubility on their mechanical and rheological characteristics. Food Bioscience, 2022, 45, 101455.	4.4	7
51	Influence of bioparticle size on the degradation of partially soluble wastewater in an anaerobic sequencing batch biofilm reactor (ASBBR). Process Biochemistry, 2005, 40, 3206-3212.	3.7	6
52	Feasibility of Treating Swine Manure in an Anaerobic Sequencing Batch Biofilm Reactor With Mechanical Stirring. Applied Biochemistry and Biotechnology, 2005, 120, 109-120.	2.9	6
53	Adsorption of antiphospholipid antibodies on affinity magnetoliposomes. Colloids and Surfaces B: Biointerfaces, 2008, 63, 249-253.	5.0	6
54	Production of Cornstarch Granules Enriched with Quercetin Liposomes by Aggregation of Particulate Binary Mixtures Using High Shear Process. Journal of Food Science, 2017, 82, 2626-2633.	3.1	6

SAMANTHA C. PINHO

#	Article	IF	CITATIONS
55	Characterization of coatings for open-heart surgery tubing with heparin and lipid. Journal of Materials Science: Materials in Medicine, 1998, 9, 793-796.	3.6	5
56	Degradation of Partially Soluble Wastewater in an Anaerobic Sequencing Batch Biofilm Reactor Role of Impeller Type. Environmental Engineering Science, 2006, 23, 803-813.	1.6	5
57	Surface-modified magnetic colloids for affinity adsorption of immunoglobulins. Journal of Magnetism and Magnetic Materials, 2008, 320, 1867-1870.	2.3	5
58	Lipid Matrices for Nanoencapsulation in Food: Liposomes and Lipid Nanoparticles. Food Engineering Series, 2015, , 99-143.	0.7	5
59	PolÃmeros sintéticos biodegradáveis: matérias-primas e métodos de produção de micropartÃculas para uso em drug delivery e liberação controlada. Polimeros, 2011, 21, 286-292.	0.7	4
60	Technological and sensory feasibility of enrichment of low-sugar mango jams with curcumin encapsulated in lipid microparticles. Food Science and Technology, 2021, 41, 74-81.	1.7	4
61	Cold-set NaCl-induced gels of soy protein isolate and locust bean gum: How the ageing process affect their microstructure and the stability of incorporated beta-carotene. LWT - Food Science and Technology, 2022, 154, 112677.	5.2	4
62	Emulsion-Filled Pectin Gels for Vehiculation of Vitamins D ₃ and B ₁₂ : From Structuring to the Development of Enriched Vegan Gummy Candies. ACS Food Science & Technology, 2021, 1, 1945-1952.	2.7	4
63	Brazil nut (Bertholletia excelsa) oil emulsions stabilized with thermally treated soy protein isolate for vitamin D3 encapsulation. Food Science and Technology, 0, , .	1.7	2
64	Effect of production parameters and stress conditions on beta-carotene-loaded lipid particles produced with palm stearin and whey protein isolate. Brazilian Journal of Food Technology, 2018, 21, .	0.8	1
65	Influence of phospholipid saturation on the physicochemical characteristics of curcumin/vitamin D 3 coâ€loaded proliposomes obtained by the micronized sucrose coating process. Journal of Food Processing and Preservation, 0, , e16006.	2.0	Ο
66	PRODUÇÃO E CARACTERIZAÇÃO DE LIPOSSOMAS LIOFILIZADOS ENCAPSULANDO QUERCETINA. , 0, , .		0
67	PRODUÇÃO E CARACTERIZAÇÃO DE PROLIPOSSOMAS POR RECOBRIMENTO DE SACAROSE MICRONIZADA.	, 0,	Ο
68	Effect of phospholipid composition on the structure and physicochemical stability of proliposomes incorporating curcumin and cholecalciferol. , 0, , .		0
69	Emulsions Can Replace Artificial Dyes in Beverages. Frontiers for Young Minds, 0, 6, .	0.8	0