
Liam R Brunham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4160806/publications.pdf Version: 2024-02-01

LIAM P RDIINHAM

#	Article	IF	CITATIONS
1	Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. Journal of Clinical Investigation, 2006, 116, 1052-1062.	3.9	447
2	l̂²-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nature Medicine, 2007, 13, 340-347.	15.2	366
3	Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death and Disease, 2021, 12, 339.	2.7	273
4	Efflux and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1322-1332.	1.1	231
5	Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. Journal of Clinical Investigation, 2005, 115, 1333-1342.	3.9	225
6	A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nature Genetics, 2015, 47, 1079-1084.	9.4	214
7	Reducing the Clinical and Public Health Burden of Familial Hypercholesterolemia. JAMA Cardiology, 2020, 5, 217.	3.0	169
8	Optimizing Cholesterol Treatment in Patients With Muscle Complaints. Journal of the American College of Cardiology, 2017, 70, 1290-1301.	1.2	162
9	Association of Monogenic vs Polygenic Hypercholesterolemia With Risk of Atherosclerotic Cardiovascular Disease. JAMA Cardiology, 2020, 5, 390.	3.0	146
10	Global perspective of familial hypercholesterolaemia: a cross-sectional study from the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Lancet, The, 2021, 398, 1713-1725.	6.3	142
11	Variations on a Gene: Rare and Common Variants inABCA1 and Their Impact on HDL Cholesterol Levels and Atherosclerosis. Annual Review of Nutrition, 2006, 26, 105-129.	4.3	139
12	Modeling Doxorubicin-Induced Cardiotoxicity in Human Pluripotent Stem Cell Derived-Cardiomyocytes. Scientific Reports, 2016, 6, 25333.	1.6	130
13	Cholesterol in islet dysfunction and type 2 diabetes. Journal of Clinical Investigation, 2008, 118, 403-408.	3.9	125
14	Risk of Premature Atherosclerotic Disease in Patients With Monogenic Versus Polygenic Familial Hypercholesterolemia. Journal of the American College of Cardiology, 2019, 74, 512-522.	1.2	121
15	HDL and LDL cholesterol significantly influence β-cell function in type 2 diabetes mellitus. Current Opinion in Lipidology, 2010, 21, 178-185.	1.2	120
16	Specific Loss of Brain ABCA1 Increases Brain Cholesterol Uptake and Influences Neuronal Structure and Function. Journal of Neuroscience, 2009, 29, 3579-3589.	1.7	116
17	Accurate Prediction of the Functional Significance of Single Nucleotide Polymorphisms and Mutations in the ABCA1 Gene. PLoS Genetics, 2005, 1, e83.	1.5	115
18	Carriers of Loss-of-Function Mutations in ABCA1 Display Pancreatic Â-Cell Dysfunction. Diabetes Care, 2010, 33, 869-874.	4.3	114

#	Article	IF	CITATIONS
19	Decreased high-density lipoprotein cholesterol level is an early prognostic marker for organ dysfunction and death in patients with suspected sepsis. Journal of Critical Care, 2017, 38, 289-294.	1.0	109
20	Loss of Both ABCA1 and ABCG1 Results in Increased Disturbances in Islet Sterol Homeostasis, Inflammation, and Impaired β-Cell Function. Diabetes, 2012, 61, 659-664.	0.3	107
21	Canadian Cardiovascular Society Position Statement on Familial Hypercholesterolemia: Update 2018. Canadian Journal of Cardiology, 2018, 34, 1553-1563.	0.8	105
22	Tissue-Specific Induction of Intestinal ABCA1 Expression With a Liver X Receptor Agonist Raises Plasma HDL Cholesterol Levels. Circulation Research, 2006, 99, 672-674.	2.0	103
23	Tissue-Specific Roles of ABCA1 Influence Susceptibility to Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 548-554.	1.1	98
24	Islet Cholesterol Accumulation Due to Loss of ABCA1 Leads to Impaired Exocytosis of Insulin Granules. Diabetes, 2011, 60, 3186-3196.	0.3	97
25	Specific Mutations in ABCA1 Have Discrete Effects on ABCA1 Function and Lipid Phenotypes Both In Vivo and In Vitro. Circulation Research, 2006, 99, 389-397.	2.0	92
26	Alterations of plasma lipids in mice via adenoviral-mediated hepatic overexpression of human ABCA1. Journal of Lipid Research, 2003, 44, 1470-1480.	2.0	85
27	Both Hepatic and Extrahepatic ABCA1 Have Discrete and Essential Functions in the Maintenance of Plasma High-Density Lipoprotein Cholesterol Levels In Vivo. Circulation, 2006, 114, 1301-1309.	1.6	80
28	Causal Inference for Genetically Determined Levels of High-Density Lipoprotein Cholesterol and Risk of Infectious Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 267-278.	1.1	78
29	Premature Atherosclerotic Cardiovascular Disease: Trends in Incidence, Risk Factors, and Sexâ€Related Differences, 2000 to 2016. Journal of the American Heart Association, 2019, 8, e012178.	1.6	75
30	The Canadian Pharmacogenomics Network for Drug Safety: A Model for Safety Pharmacology. Thyroid, 2010, 20, 681-687.	2.4	67
31	Prevalence and characteristics of adverse drug reactions at admission to hospital: a prospective observational study. British Journal of Clinical Pharmacology, 2016, 82, 1636-1646.	1.1	67
32	Whole-Genome Sequencing: The New Standard of Care?. Science, 2012, 336, 1112-1113.	6.0	63
33	Simplified Canadian Definition for Familial Hypercholesterolemia. Canadian Journal of Cardiology, 2018, 34, 1210-1214.	0.8	62
34	Cholesteryl Ester Transfer Protein Influences High-Density Lipoprotein Levels and Survival in Sepsis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 854-862.	2.5	62
35	Chromosome 1q21.2 and additional loci influence risk of spontaneous coronary artery dissection and myocardial infarction. Nature Communications, 2020, 11, 4432.	5.8	60
36	Inhibition of Cholesteryl Ester Transfer Protein Preserves High-Density Lipoprotein Cholesterol and Improves Survival in Sepsis. Circulation, 2021, 143, 921-934.	1.6	55

#	Article	IF	CITATIONS
37	Cholesterol in \hat{I}^2 -cell Dysfunction: The Emerging Connection Between HDL Cholesterol and Type 2 Diabetes. Current Diabetes Reports, 2010, 10, 55-60.	1.7	54
38	The Clinical Genome Resource (ClinGen) Familial Hypercholesterolemia Variant Curation Expert Panel consensus guidelines for LDLR variant classification. Genetics in Medicine, 2022, 24, 293-306.	1.1	53
39	Ascertainment Bias in the Association Between Elevated Lipoprotein(a) and Familial Hypercholesterolemia. Journal of the American College of Cardiology, 2020, 75, 2682-2693.	1.2	50
40	Role of genetics in the prediction of statin-associated muscle symptoms and optimization of statin use and adherence. Cardiovascular Research, 2018, 114, 1073-1081.	1.8	49
41	Imputation of Baseline LDL Cholesterol Concentration in Patients with Familial Hypercholesterolemia on Statins or Ezetimibe. Clinical Chemistry, 2018, 64, 355-362.	1.5	47
42	Human genetics of HDL: Insight into particle metabolism and function. Progress in Lipid Research, 2015, 58, 14-25.	5.3	45
43	Ibrutinib Displays Atrial-Specific Toxicity in Human Stem Cell-Derived Cardiomyocytes. Stem Cell Reports, 2019, 12, 996-1006.	2.3	43
44	Familial Hypercholesterolemia-Risk-Score: A New Score Predicting Cardiovascular Events and Cardiovascular Mortality in Familial Hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2632-2640.	1.1	42
45	Association Between <i>SLC16A5</i> Genetic Variation and Cisplatin-Induced Ototoxic Effects in Adult Patients With Testicular Cancer. JAMA Oncology, 2017, 3, 1558.	3.4	41
46	Polygenic Contribution to Low-Density Lipoprotein Cholesterol Levels and Cardiovascular Risk in Monogenic Familial Hypercholesterolemia. Circulation Genomic and Precision Medicine, 2020, 13, 515-523.	1.6	36
47	Association and clinical utility of NAT2 in the prediction of isoniazid-induced liver injury in Singaporean patients. PLoS ONE, 2017, 12, e0186200.	1.1	36
48	Molecular regulation of plasma lipid levels during systemic inflammation and sepsis. Current Opinion in Lipidology, 2019, 30, 108-116.	1.2	34
49	Variation in RARG increases susceptibility to doxorubicin-induced cardiotoxicity in patient specific induced pluripotent stem cell-derived cardiomyocytes. Scientific Reports, 2020, 10, 10363.	1.6	34
50	Estimating the Prevalence of Familial Hypercholesterolemia in Acute Coronary Syndrome: A Systematic Review and Meta-analysis. Canadian Journal of Cardiology, 2019, 35, 1322-1331.	0.8	32
51	Hunting human disease genes: lessons from the past, challenges for the future. Human Genetics, 2013, 132, 603-617.	1.8	31
52	Targeted next-generation sequencing to diagnose disorders of HDL cholesterol. Journal of Lipid Research, 2015, 56, 1993-2001.	2.0	28
53	CETP genetic variant rs1800777 (allele A) is associated with abnormally low HDL-C levels and increased risk of AKI during sepsis. Scientific Reports, 2018, 8, 16764.	1.6	26
54	Progress in understanding the genomic basis for adverse drug reactions: a comprehensive review and focus on the role of ethnicity. Pharmacogenomics, 2015, 16, 1161-1178.	0.6	25

#	Article	IF	CITATIONS
55	Contemporary Trends in the Management and Outcomes of Patients With Familial Hypercholesterolemia in Canada: AAProspective Observational Study. Canadian Journal of Cardiology, 2017, 33, 385-392.	0.8	25
56	Attainment of Recommended Lipid Targets in Patients With Familial Hypercholesterolemia: Real-World Experience With PCSK9 Inhibitors. Canadian Journal of Cardiology, 2018, 34, 1004-1009.	0.8	24
57	Increased prevalence of clinical and subclinical atherosclerosis in patients with damaging mutations in ABCA1 or APOA1. Journal of Clinical Lipidology, 2018, 12, 116-121.	0.6	23
58	Genetic diversity of variants involved in drug response and metabolism in Sri Lankan populations. Pharmacogenetics and Genomics, 2016, 26, 28-39.	0.7	21
59	Familial hypercholesterolemia in Canada: Initial results from the FH Canada national registry. Atherosclerosis, 2018, 277, 419-424.	0.4	18
60	CRISPR/Cas9-mediated genome editing in human stem cell-derived cardiomyocytes: Applications for cardiovascular disease modelling and cardiotoxicity screening. Drug Discovery Today: Technologies, 2018, 28, 13-21.	4.0	18
61	Pharmacogenomics in Asia: a systematic review on current trends and novel discoveries. Pharmacogenomics, 2017, 18, 891-910.	0.6	15
62	Diagnostic accuracy of ultrasound and MRI for Achilles tendon xanthoma in people with familial hypercholesterolemia: A systematic review. Journal of Clinical Lipidology, 2019, 13, 40-48.	0.6	15
63	Economic burden of adverse drug reactions and potential for pharmacogenomic testing in Singaporean adults. Pharmacogenomics Journal, 2019, 19, 401-410.	0.9	15
64	Major adverse cardiovascular events in homozygous familial hypercholesterolaemia: a systematic review and meta-analysis. European Journal of Preventive Cardiology, 2022, 29, 817-828.	0.8	12
65	The design and rationale of SAVE BC: The Study to Avoid CardioVascular Events in British Columbia. Clinical Cardiology, 2018, 41, 888-895.	0.7	11
66	Sex Differences in the Presentation, Treatment, and Outcome of Patients With Familial Hypercholesterolemia. Journal of the American Heart Association, 2021, 10, e019286.	1.6	11
67	Polygenic scores for dyslipidemia: the emerging genomic model of plasma lipoprotein trait inheritance. Current Opinion in Lipidology, 2021, 32, 103-111.	1.2	11
68	RARG S427L attenuates the DNA repair response to doxorubicin in induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Reports, 2022, 17, 756-765.	2.3	11
69	The Interplay Between Titin, Polygenic Risk, and Modifiable Cardiovascular Risk Factors in Atrial Fibrillation. Canadian Journal of Cardiology, 2021, 37, 848-856.	0.8	10
70	The effects of cholesterol accumulation on Achilles tendon biomechanics: A cross-sectional study. PLoS ONE, 2021, 16, e0257269.	1.1	10
71	Polygenic architecture and cardiovascular risk of familial combined hyperlipidemia. Atherosclerosis, 2022, 340, 35-43.	0.4	10
72	HDL as a Causal Factor in Atherosclerosis: Insights from Human Genetics. Current Atherosclerosis Reports, 2016, 18, 71.	2.0	9

#	Article	IF	CITATIONS
73	Health-related quality of life in homozygous familial hypercholesterolemia: A systematic review and meta-analysis. Journal of Clinical Lipidology, 2022, 16, 52-65.	0.6	8
74	Time course and clinical characterization of cisplatinâ€induced ototoxicity after treatment for nasopharyngeal carcinoma in a South East Asian population. Head and Neck, 2018, 40, 1425-1433.	0.9	7
75	Familial Hypercholesterolemia, Familial Combined Hyperlipidemia and Elevated Lipoprotein(a) in Patients with Premature Coronary Artery Disease. Canadian Journal of Cardiology, 2021, 37, 1733-1742.	0.8	7
76	Influence of the LDL-Receptor Genotype on Statin Response in Heterozygous Familial Hypercholesterolemia: Insights From the Canadian FH Registry. Canadian Journal of Cardiology, 2022, 38, 311-319.	0.8	7
77	Patient Perspectives Regarding Genetic Testing for Familial Hypercholesterolemia. CJC Open, 2021, 3, 557-564.	0.7	6
78	What Is the Prevalence of Familial Hypercholesterolemia?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2629-2631.	1.1	6
79	Lipid-lowering therapy for primary prevention of premature atherosclerotic coronary artery disease: Eligibility, utilization, target achievement, and predictors of initiation. American Journal of Preventive Cardiology, 2020, 2, 100036.	1.3	4
80	Personalized Medicine: Temper Expectations—Response. Science, 2012, 337, 911-911.	6.0	2
81	Comment on Rickels et al. Loss-of-Function Mutations inABCA1and Enhanced β-Cell Secretory Capacity in Young Adults. Diabetes 2015;64:193–199. Diabetes, 2015, 64, e25-e26.	0.3	2
82	Use of Human Pluripotent Stem Cell Derived ardiomyocytes to Study Drugâ€Induced Cardiotoxicity. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2017, 73, 22.5.1-22.5.22.	1.1	2
83	Priorities for Services in Young Patients With Atherosclerotic Cardiovascular Disease and Their Family Members: An Exploratory Mixed-Methods Study. CJC Open, 2019, 1, 107-114.	0.7	2
84	HDL and pancreatic \hat{I}^2 cells: a SMO-king gun?. Journal of Lipid Research, 2020, 61, 468-469.	2.0	2
85	Modulation of Cardiovascular Risk by Monogenic and Polygenic Determinants of Low-Density Lipoprotein Cholesterol^. Journal of Clinical Lipidology, 2020, 14, 555-556.	0.6	1
86	Response by Brunham et al to Letter Regarding Article, "Inhibition of Cholesteryl Ester Transfer Protein Preserves High-Density Lipoprotein Cholesterol and Improves Survival in Sepsis― Circulation, 2021, 144, e122.	1.6	1
87	Polygenic risk scores for the diagnosis and management of dyslipidemia. Current Opinion in Endocrinology, Diabetes and Obesity, 2022, Publish Ahead of Print, .	1.2	1
88	Discoveries in sphingolipid metabolism, spinocerebellar ataxia and autoimmune disease. Clinical Genetics, 2003, 64, 1-3.	1.0	0
89	Clarity is essential when using Nucleotide number systems. Atherosclerosis, 2003, 170, 349.	0.4	0
90	Low Rates of Identification and Treatment of Familial Hypercholesterolemia in France and Elsewhere: A Call for Universal Screening. Canadian Journal of Cardiology, 2019, 35, 699-700.	0.8	0

#	Article	IF	CITATIONS
91	High-Density Lipoprotein-Based Therapeutics: Can a Novel Mechanism Succeed Where Previous Approaches Have Failed?. Canadian Journal of Cardiology, 2019, 35, 705-706.	0.8	0
92	Editorial Commentary: What Determines the Risk of Cardiovascular Disease in Familial Hypercholesterolemia?. Trends in Cardiovascular Medicine, 2021, 31, 216-217.	2.3	0
93	Predicting Anthracyclineâ€induced Cardiotoxicity in Children – Genomeâ€Wide Association Study. FASEB Journal, 2013, 27, 663.3.	0.2	Ο
94	Genetic Confirmation of Monogenic Familial Hypercholesterolemia Advises a More Intensive Lipid-Lowering Approach—Reply. JAMA Cardiology, 2020, 5, 1453.	3.0	0
95	The design and rationale of the Advancing Cardiac Care Unit-based Rapid Assessment and Treatment of hypErcholesterolemia (ACCURATE) study. American Heart Journal Plus, 2022, 13, 100097.	0.3	0