
Mehdi Zavvari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4160756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of graphene-based hybrid waveguides for nonlinear applications. Optical and Quantum Electronics, 2019, 51, 1.	3.3	106
2	Design and analysis of all-optical 4–2 binary encoder based on photonic crystal. Optical and Quantum Electronics, 2017, 49, 1.	3.3	53
3	Design and analysis of integrated all-optical \$\$2imes 4\$\$ 2 × 4 decoder based on 2D photonic crystals. Photonic Network Communications, 2018, 35, 122-128.	2.7	52
4	A novel optical filter based on H-shape photonic crystal ring resonators. Optik, 2015, 126, 2535-2538.	2.9	49
5	All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators. Frontiers of Optoelectronics, 2016, 9, 578-584.	3.7	46
6	Very compact photonic crystal resonant cavity for all optical filtering. Iranian Physical Journal, 2014, 8, 183-188.	1.2	31
7	Design of a high-performance metal–insulator–metal plasmonic demultiplexer. Journal of Nanophotonics, 2017, 11, 026002.	1.0	29
8	Photonic Crystal Cavity with L3-Defect for Resonant Optical Filtering. Frequenz, 2014, 68, .	0.9	27
9	Tunable band-stop plasmonic filter based on square ring resonators in a metal-insulator-metal structure. Journal of Modern Optics, 2017, 64, 2221-2227.	1.3	27
10	Quantum-Dot-Based Mid-IR Single-Photon Detector With Self-Quenching and Self-Recovering Operation. IEEE Electron Device Letters, 2013, 34, 783-785.	3.9	22
11	High performance n-ZnO/p-metal-oxides UV detector grown in low-temperature aqueous solution bath. Thin Solid Films, 2017, 626, 173-177.	1.8	19
12	Quantum dot infrared photodetector enhanced by avalanche multiplication. Electronics Letters, 2012, 48, 589.	1.0	16
13	Self quenched quantum dot avalanche photodetector for mid-infrared single photon detection. Infrared Physics and Technology, 2014, 62, 7-12.	2.9	12
14	Quantum dot infrared photodetector with gated-mode design for mid-IR single photon detection. Applied Optics, 2013, 52, 7675.	1.8	9
15	Proposal of a quantum ring intersubband photodetector integrated with avalanche multiplication region for high performance detection of far infrared. Optik, 2015, 126, 1861-1864.	2.9	8
16	Application of Hyperbolic Metamaterials for Responsivity Enhancement of Thin Film Photo-Conductive Detectors. IEEE Sensors Journal, 2016, 16, 8916-8920.	4.7	8
17	A novel MIMO antenna with an improved isolation for UWB and multiband applications. Analog Integrated Circuits and Signal Processing, 2021, 107, 171-179.	1.4	8
18	DYNAMICS OF AVALANCHE QUANTUM DOT INFRARED PHOTODETECTORS. Modern Physics Letters B, 2012, 26, 1250216.	1.9	7

Mehdi Zavvari

#	Article	IF	CITATIONS
19	Resonant cavity enhanced quantum ring photodetector at \$\$20,upmu \$\$ 20 î¼ m wavelength. Optical and Quantum Electronics, 2013, 45, 1249-1258.	3.3	7
20	High performance avalanche quantum dot photodetector for mid-infrared detection. Optical and Quantum Electronics, 2015, 47, 1207-1217.	3.3	7
21	A novel proposal for all optical FSK demodulator using photonic crystal based resonant cavities. Optik, 2020, 203, 163953.	2.9	7
22	Improving the performance of a far-infrared quantum-ring-based photodetector utilizing asymmetric multi-barrier resonant tunneling. Infrared Physics and Technology, 2014, 62, 81-85.	2.9	6
23	Second-Harmonic Generation in III-Nitride Quantum Wells Enhanced by Metamaterials. IEEE Photonics Technology Letters, 2016, 28, 2199-2202.	2.5	6
24	Design of Photonic Crystal-Based Demultiplexer with High-Quality Factor for DWDM Applications. Journal of Optical Communications, 2019, 40, 135-138.	4.7	6
25	Graphene Plasmonic Crystal: Two-Dimensional Gate-Controlled Chemical Potential for Creation of Photonic Bandgap. Plasmonics, 2020, 15, 975-983.	3.4	6
26	InAs/GaAs far infrared quantum ring inter-subband photodetector. Frontiers of Optoelectronics, 2014, 7, 84-90.	3.7	5
27	Periodically voltage-modulated graphene plasmonic waveguide for band-rejection applications. Journal of Nanophotonics, 2018, 12, 1.	1.0	5
28	Broad band circularly polarized square slot array antenna with improved sequentially rotated feed network for C-band application. International Journal of Microwave and Wireless Technologies, 2017, 9, 171-175.	1.9	4
29	Design of Split Ring Resonators for Enhanced Two-Color Operation of Quantum Dot Infrared Photodetectors. IEEE Sensors Journal, 2017, 17, 4747-4751.	4.7	4
30	Localised surface plasmons of a corrugated metal–insulator–metal ring resonator for enhanced multiband antenna. Electronics Letters, 2018, 54, 120-122.	1.0	4
31	Design of resonant cavity structure for efficient high-temperature operation of single-photon avalanche photodiodes. Applied Optics, 2014, 53, 3311.	1.8	3
32	Numerical analysis of quantum ring intersubband photodetector for far infrared detection. Optical and Quantum Electronics, 2014, 46, 1107-1116.	3.3	3
33	Tunable far infrared detection using quantum rings-in-well intersubband photodetectors. Optical and Quantum Electronics, 2015, 47, 3555-3565.	3.3	3
34	Quantum-dot-based single-photon avalanche detector for mid-infrared applications. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 737.	2.1	3
35	Analysis of single photon detection in avalanche photodetectors with multi-gain-stage multiplication region. Applied Optics, 2017, 56, 1631.	2.1	3
36	Probabilistic dispatch in hybrid-microgrid system with considering energy arbitrage. Journal of Renewable and Sustainable Energy, 2019, 11, 025904.	2.0	3

Mehdi Zavvari

#	Article	IF	CITATIONS
37	Avalanche quantum dot-in-well long wavelength infrared photodetectors: Linear and Geiger mode operation. Infrared Physics and Technology, 2014, 65, 72-76.	2.9	2
38	Design and Analysis of Ultra-Fast All-Optical Modulator Based on Photonic Crystal. Journal of Optical Communications, 2016, 37, .	4.7	2
39	Modeling the performance characteristics of ZnO-based heterojunction photodetectors. Journal of Computational Electronics, 2017, 16, 133-138.	2.5	2
40	A High Efficiency Optical Power Splitter in a Y-Branch Photonic Crystal for DWDM Optical Communication Systems. Frequenz, 2017, 72, .	0.9	2
41	Excitation of higher order modes in total transmission by zero index metamaterials with embedded defects. Optics Communications, 2017, 403, 170-174.	2.1	2
42	Two-color photodetection of graphene-based transistors enhanced by metallic photonic crystals. Journal of Computational Electronics, 2022, 21, 953-959.	2.5	2
43	THEORETICAL STUDY OF UNIPOLAR INTERSUBBAND IMPACT IONIZATION IN QUANTUM DOT BASED PHOTODETECTORS. Modern Physics Letters B, 2013, 27, 1350208.	1.9	1
44	Modeling of dark current and photo-response in quantum ring intersubband photodetectors. Optical and Quantum Electronics, 2015, 47, 2359-2369.	3.3	1
45	Modeling the performance characteristics of Pr3+: ZBLAN fiber laser at 638Ânm. Optical and Quantum Electronics, 2016, 48, 1.	3.3	1
46	Modeling and analysis of red emission in \$\$hbox {Pr}^{3+}\$\$ Pr 3 + -doped fiber lasers. Photonic Network Communications, 2017, 33, 348-355.	2.7	1
47	Strong coupling of metamaterial resonances to intersubband transitions of quantum dots for enhanced second-harmonic generation. Applied Optics, 2018, 57, 10505.	1.8	1
48	Chirp Parameter in Strained Coupled Quantum Well Electroabsorption Modulators. Journal of Optical Communications, 2014, 35, .	4.7	0
49	All optical FSK demodulator using PhC-based ring resonators. Optical and Quantum Electronics, 2021, 53, 1.	3.3	0
50	Eliminating excess phase accumulation in a continuous perturbed heterogeneous planar photonic crystal. Photonics and Nanostructures - Fundamentals and Applications, 2022, 48, 100985.	2.0	0