Roberto Bergamaschini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4160734/publications.pdf

Version: 2024-02-01

516561 552653 45 755 16 26 citations g-index h-index papers 45 45 45 661 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Scaling Hetero-Epitaxy from Layers to Three-Dimensional Crystals. Science, 2012, 335, 1330-1334.	6.0	149
2	Faceting of Equilibrium and Metastable Nanostructures: A Phase-Field Model of Surface Diffusion Tackling Realistic Shapes. Crystal Growth and Design, 2015, 15, 2787-2794.	1.4	69
3	Self-aligned Ge and SiGe three-dimensional epitaxy on dense Si pillar arrays. Surface Science Reports, 2013, 68, 390-417.	3.8	43
4	Anomalous Smoothing Preceding Island Formation During Growth on Patterned Substrates. Physical Review Letters, 2012, 109, 156101.	2.9	34
5	Ge Crystals on Si Show Their Light. Physical Review Applied, 2014, 1, .	1.5	34
6	Growth kinetics and morphological analysis of homoepitaxial GaAs fins by theory and experiment. Physical Review Materials, 2018, 2, .	0.9	31
7	Critical strain for Sn incorporation into spontaneously graded Ge/GeSn core/shell nanowires. Nanoscale, 2018, 10, 7250-7256.	2.8	28
8	Engineered Coalescence by Annealing 3D Ge Microstructures into High-Quality Suspended Layers on Si. ACS Applied Materials & Earney interfaces, 2015, 7, 19219-19225.	4.0	24
9	Competition Between Kinetics and Thermodynamics During the Growth of Faceted Crystal by Phase Field Modeling. Physica Status Solidi (B): Basic Research, 2019, 256, 1800518.	0.7	23
10	Strain engineering in Ge/GeSn core/shell nanowires. Applied Physics Letters, 2019, 115, .	1.5	22
11	3D heteroepitaxy of mismatched semiconductors on silicon. Thin Solid Films, 2014, 557, 42-49.	0.8	18
12	Phase-field simulations of faceted Ge/Si-crystal arrays, merging into a suspended film. Applied Surface Science, 2017, 391, 33-38.	3.1	18
13	Dislocation-Free SiGe/Si Heterostructures. Crystals, 2018, 8, 257.	1.0	18
14	Temperature-dependent evolution of the wetting layer thickness during Ge deposition on Si(001). Nanotechnology, 2011, 22, 285704.	1.3	17
15	Kinetic Control of Morphology and Composition in Ge/GeSn Core/Shell Nanowires. ACS Nano, 2020, 14, 2445-2455.	7.3	17
16	Dynamics of pit filling in heteroepitaxy via phase-field simulations. Physical Review B, 2016, 94, .	1.1	16
17	Modeling the competition between elastic and plastic relaxation in semiconductor heteroepitaxy: From cyclic growth to flat films. Physical Review B, 2016, 94, .	1.1	16
18	(Invited) Three-Dimensional Epitaxial Si _{1-X} Ge _x , Ge and SiC Crystals on Deeply Patterned Si Substrates. ECS Transactions, 2014, 64, 631-648.	0.3	14

#	Article	IF	CITATIONS
19	Continuum modelling of semiconductor heteroepitaxy: an applied perspective. Advances in Physics: X, 2016, 1, 331-367.	1.5	14
20	Optimal Growth Conditions for Selective Ge Islands Positioning on Pit-Patterned Si(001). Nanoscale Research Letters, 2010, 5, 1873-1877.	3.1	12
21	Kinetic growth mode of epitaxial GaAs on Si(001) micro-pillars. Journal of Applied Physics, 2016, 120, .	1.1	12
22	Temperature-controlled coalescence during the growth of Ge crystals on deeply patterned Si substrates. Journal of Crystal Growth, 2016, 440, 86-95.	0.7	11
23	The interplay of morphological and compositional evolution in crystal growth: a phase-field model. Philosophical Magazine, 2014, 94, 2162-2169.	0.7	10
24	Reduced-Pressure Chemical Vapor Deposition Growth of Isolated Ge Crystals and Suspended Layers on Micrometric Si Pillars. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26374-26380.	4.0	10
25	A self-ordered, body-centered tetragonal superlattice of SiGe nanodot growth by reduced pressure CVD. Nanotechnology, 2017, 28, 485303.	1.3	10
26	Morphological evolution of Ge/Si nano-strips driven by Rayleigh-like instability. Applied Physics Letters, 2018, 112, 022101.	1.5	10
27	Optically reconfigurable polarized emission in Germanium. Scientific Reports, 2018, 8, 11119.	1.6	9
28	Growth and Coalescence of 3C-SiC on Si(111) Micro-Pillars by a Phase-Field Approach. Materials, 2019, 12, 3223.	1.3	9
29	Growth of thick [1â€ ⁻ 1â€ ⁻ 1]-oriented 3C-SiC films on T-shaped Si micropillars. Materials and Design, 2021, 208, 109833.	3.3	9
30	Selective Area Epitaxy of GaAs/Ge/Si Nanomembranes: A Morphological Study. Crystals, 2020, 10, 57.	1.0	8
31	Doubling the mobility of InAs/InGaAs selective area grown nanowires. Physical Review Materials, 2022, 6, .	0.9	8
32	Solving the critical thermal bowing in $3C$ -SiC/Si(111) by a tilting Si pillar architecture. Journal of Applied Physics, 2018, 123, 185703.	1.1	6
33	Sunburst pattern by kinetic segregation in core-shell nanowires: A phase-field study. Applied Surface Science, 2020, 517, 146056.	3.1	6
34	Epitaxial Ge-crystal arrays for X-ray detection. Journal of Instrumentation, 2014, 9, C03019-C03019.	0.5	5
35	Faceting of Si and Ge crystals grown on deeply patterned Si substrates in the kinetic regime: phase-field modelling and experiments. Scientific Reports, 2021, 11, 18825.	1.6	4
36	A Structural Characterization of GaAs MBE Grown on Si Pillars. Acta Physica Polonica A, 2014, 125, 986-990.	0.2	3

#	Article	IF	CITATIONS
37	Reentrant Behavior of the Density vs. Temperature of Indium Islands on GaAs(111)A. Nanomaterials, 2020, 10, 1512.	1.9	2
38	Self-Assembly of Nanovoids in Si Microcrystals Epitaxially Grown on Deeply Patterned Substrates. Crystal Growth and Design, 2020, 20, 2914-2920.	1.4	2
39	Three dimensional heteroepitaxy: A new path for monolithically integrating mismatched materials with silicon. , 2012 , , .		1
40	Motion of crystalline inclusions by interface diffusion in the proximity of free surfaces. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	1
41	Prismatic Ge-rich inclusions in the hexagonal SiGe shell of GaP–Si–SiGe nanowires by controlled faceting. Nanoscale, 2021, 13, 9436-9445.	2.8	1
42	Phase-field modeling of the morphological evolution of ringlike structures during growth: Thermodynamics, kinetics, and template effects. Physical Review Materials, 2022, 6, .	0.9	1
43	Space-Filling Arrays of Three-Dimensional Epitaxial Ge and Si1-xGex Crystals. , 2012, , .		O
44	Slip trace-induced terrace erosion. Applied Surface Science, 2019, 466, 454-458.	3.1	0
45	Semiconductor Heteroepitaxy. Crystals, 2021, 11, 229.	1.0	0