
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4160511/publications.pdf Version: 2024-02-01

LAUDA MANDOLESI

#	Article	IF	CITATIONS
1	Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Frontiers in Psychology, 2018, 9, 509.	1.1	462
2	Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behavioural Brain Research, 2005, 163, 78-90.	1.2	421
3	On whether the environmental enrichment may provide cognitive and brain reserves. Brain Research Reviews, 2009, 61, 221-239.	9.1	196
4	Representation of actions in rats: The role of cerebellum in learning spatial performances by observation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2320-2325.	3.3	95
5	Dopamine in the Medial Prefrontal Cortex Controls Genotype-Dependent Effects of Amphetamine on Mesoaccumbens Dopamine Release and Locomotion. Neuropsychopharmacology, 2004, 29, 72-80.	2.8	89
6	The Neuroprotective Effects of Experience on Cognitive Functions: Evidence from Animal Studies on the Neurobiological Bases of Brain Reserve. Neuroscience, 2018, 370, 218-235.	1.1	86
7	Cerebellar contribution to spatial event processing: characterization of procedural learning. Experimental Brain Research, 1999, 127, 1-11.	0.7	83
8	Cerebellar contribution to spatial event processing: involvement in procedural and working memory components. European Journal of Neuroscience, 2001, 14, 2011-2022.	1.2	71
9	Watch how to do it! New advances in learning by observation. Brain Research Reviews, 2003, 42, 252-264.	9.1	67
10	Environmental Enrichment Provides a Cognitive Reserve to be Spent in the Case of Brain Lesion. Journal of Alzheimer's Disease, 2008, 15, 11-28.	1.2	57
11	Environmental Factors Promoting Neural Plasticity: Insights from Animal and Human Studies. Neural Plasticity, 2017, 2017, 1-10.	1.0	57
12	Flexible brain dynamics underpins complex behaviours as observed in Parkinson's disease. Scientific Reports, 2021, 11, 4051.	1.6	48
13	Mindfulness Meditation Is Related to Long-Lasting Changes in Hippocampal Functional Topology during Resting State: A Magnetoencephalography Study. Neural Plasticity, 2018, 2018, 1-9.	1.0	44
14	Cerebellar contribution to spatial event processing: do spatial procedures contribute to formation of spatial declarative knowledge?. European Journal of Neuroscience, 2003, 18, 2618-2626.	1.2	42
15	Spatial competences in Williams syndrome: a radial arm maze study. International Journal of Developmental Neuroscience, 2009, 27, 205-213.	0.7	38
16	Cognitive Performances of Cholinergically Depleted Rats Following Chronic Donepezil Administration. Journal of Alzheimer's Disease, 2009, 17, 161-176.	1.2	38
17	Executive functioning profiles in elite volleyball athletes: Preliminary results by a sport-specific task switching protocol. Human Movement Science, 2019, 63, 73-81.	0.6	35
18	Environmental enrichment mitigates the effects of basal forebrain lesions on cognitive flexibility. Neuroscience, 2008, 154, 444-453.	1.1	34

#	Article	IF	CITATIONS
19	Cerebellar involvement in cognitive flexibility. Neurobiology of Learning and Memory, 2009, 92, 310-317.	1.0	30
20	Children' s radial arm maze performance as a function of age and sex. International Journal of Developmental Neuroscience, 2009, 27, 789-797.	0.7	27
21	Psychosocial variables and quality of life during the COVID-19 lockdown: a correlational study on a convenience sample of young Italians. PeerJ, 2020, 8, e10611.	0.9	27
22	In vivo evidence that genetic background controls impulse-dependent dopamine release induced by amphetamine in the nucleus accumbens. Journal of Neurochemistry, 2004, 89, 494-502.	2.1	26
23	Mutations in the SPAST gene causing hereditary spastic paraplegia are related to global topological alterations in brain functional networks. Neurological Sciences, 2019, 40, 979-984.	0.9	26
24	Learning power of single behavioral units in acquisition of a complex spatial behavior: An observational learning study in cerebellar-lesioned rats Behavioral Neuroscience, 2002, 116, 116-125.	0.6	24
25	Effects of Chronic Donepezil Treatment and Cholinergic Deafferentation on Parietal Pyramidal Neuron Morphology. Journal of Alzheimer's Disease, 2009, 17, 177-191.	1.2	24
26	Further to the Left: Stress-Induced Increase of Spatial Pseudoneglect During the COVID-19 Lockdown. Frontiers in Psychology, 2021, 12, 573846.	1.1	24
27	NMDA receptor activity in learning spatial procedural strategies. Brain Research Bulletin, 2006, 70, 356-367.	1.4	23
28	The NMDA receptor antagonist CGS 19755 disrupts recovery following cerebellar lesions. Restorative Neurology and Neuroscience, 2006, 24, 1-7.	0.4	23
29	Explorative function in Williams syndrome analyzed through a large-scale task with multiple rewards. Research in Developmental Disabilities, 2011, 32, 972-985.	1.2	21
30	Cerebellar Damage Loosens the Strategic Use of the Spatial Structure of the Search Space. Cerebellum, 2010, 9, 29-41.	1.4	19
31	Cognitive performance of healthy young rats following chronic donepezil administration. Psychopharmacology, 2008, 197, 661-673.	1.5	18
32	A new paradigm to analyze observational learning in rats. Brain Research Protocols, 2003, 12, 83-90.	1.7	15
33	NMDA receptor activity in learning spatial procedural strategies. Brain Research Bulletin, 2006, 70, 347-355.	1.4	15
34	Spatial Competences in Prader–Willi Syndrome: A Radial Arm Maze Study. Behavior Genetics, 2011, 41, 445-456.	1.4	15
35	Learning by Observation: Insights from Williams Syndrome. PLoS ONE, 2013, 8, e53782.	1.1	15
36	Brain Networks and Cognitive Impairment in Parkinson's Disease. Brain Connectivity, 2022, 12, 465-475.	0.8	15

#	Article	IF	CITATIONS
37	Functional Role of Internal and External Visual Imagery: Preliminary Evidences from Pilates. Neural Plasticity, 2018, 2018, 1-8.	1.0	14
38	The Development of Spatial Memory Analyzed by Means of Ecological Walking Task. Frontiers in Psychology, 2019, 10, 728.	1.1	14
39	The beneficial effects of physical exercise on visuospatial working memory in preadolescent children. AIMS Neuroscience, 2021, 8, 496-509.	1.0	14
40	The progressive loss of brain network fingerprints in Amyotrophic Lateral Sclerosis predicts clinical impairment. NeuroImage: Clinical, 2022, 35, 103095.	1.4	14
41	Is the cerebellum involved in the visuo-locomotor associative learning?. Behavioural Brain Research, 2007, 184, 47-56.	1.2	13
42	Learning by observation and learning by doing in Prader-Willi syndrome. Journal of Neurodevelopmental Disorders, 2015, 7, 6.	1.5	13
43	A night of sleep deprivation alters brain connectivity and affects specific executive functions. Neurological Sciences, 2022, 43, 1025-1034.	0.9	13
44	Nutrition and cognition across the lifetime: an overview on epigenetic mechanisms. AIMS Neuroscience, 2021, 8, 448-476.	1.0	13
45	Effects of spatial food distribution on search behavior in rats (Rattus norvegicus) Journal of Comparative Psychology (Washington, D C: 1983), 2007, 121, 290-299.	0.3	12
46	Features of sequential learning in hemicerebellectomized rats. Journal of Neuroscience Research, 2010, 88, 478-486.	1.3	11
47	Observational Learning in Low-Functioning Children With Autism Spectrum Disorders: A Behavioral and Neuroimaging Study. Frontiers in Psychology, 2018, 9, 2737.	1.1	11
48	An automated magnetoencephalographic data cleaning algorithm. Computer Methods in Biomechanics and Biomedical Engineering, 2019, 22, 1116-1125.	0.9	9
49	Neuronal Avalanches to Study the Coordination of Large-Scale Brain Activity: Application to Rett Syndrome. Frontiers in Psychology, 2020, 11, 550749.	1.1	9
50	Is learning by observation impaired in children with dyslexia?. Neuropsychologia, 2011, 49, 1996-2003.	0.7	8
51	Cortical Metabolic Deficits in a Rat Model of Cholinergic Basal Forebrain Degeneration. Neurochemical Research, 2013, 38, 2114-2123.	1.6	8
52	Are the deficits in navigational abilities present in the Williams syndrome related to deficits in the backward inhibition?. Frontiers in Psychology, 2015, 6, 287.	1.1	8
53	Learning by observation and learning by doing in DownÂandÂWilliamsÂsyndromes. Developmental Science, 2018, 21, e12642.	1.3	8
54	Peripersonal Visuospatial Abilities in Williams Syndrome Analyzed by a Table Radial Arm Maze Task. Frontiers in Human Neuroscience, 2020, 14, 254.	1.0	8

#	Article	IF	CITATIONS
55	Behavioral Restriction Determines Left Attentional Bias: Preliminary Evidences From COVID-19 Lockdown. Frontiers in Psychology, 2021, 12, 650715.	1.1	8
56	Explorative function in Prader–Willi syndrome analyzed through an ecological spatial task. Research in Developmental Disabilities, 2015, 38, 97-107.	1.2	6
57	When the going gets tough, what happens to quiet eye? The role of time pressure and performance pressure during basketball free throws. Psychology of Sport and Exercise, 2022, 58, 102057.	1.1	6
58	Are young children able to learn exploratory strategies by observation?. Psychological Research, 2018, 82, 1212-1223.	1.0	5
59	Application of Real and Virtual Radial Arm Maze Task in Human. Brain Sciences, 2022, 12, 468.	1.1	5
60	Learning power of single behavioral units in acquisition of a complex spatial behavior: an observational learning study in cerebellar-lesioned rats. Behavioral Neuroscience, 2002, 116, 116-25.	0.6	4
61	Moral Judgement along the Academic Training. International Journal of Environmental Research and Public Health, 2022, 19, 10.	1.2	3
62	Curiosity Killed the Cat but Not Memory: Enhanced Performance in High-Curiosity States. Brain Sciences, 2022, 12, 846.	1.1	2
63	Can Stimulus Valence Modulate Task-Switching Ability? A Pilot Study on Primary School Children. International Journal of Environmental Research and Public Health, 2022, 19, 6409.	1.2	1
64	Immaginare di fare. , 2012, , 105-110.		0
65	Movimento, atto motorio e azione. , 2012, , 25-30.		Ο
66	Migliorare e proteggere le abilità motorie. , 2012, , 123-136.		0
67	Saper far fare e far ri-fare. , 2012, , 111-121.		Ο
68	Fare. , 2012, , 49-71.		0
69	Voler fare: Quando l'azione diventa cognizione. , 2012, , 73-89.		Ο
70	Veder fare. , 2012, , 91-104.		0
71	Le neuroscienze: Percorsi storici e metodi di studio dell'attività motoria. , 2012, , 1-23.		0
72	Brain network topology and personality traits: A source level magnetoencephalographic study. Scandinavian Journal of Psychology, 2022, 63, 495-503.	0.8	0