

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4160159/publications.pdf Version: 2024-02-01

FELLU

#	Article	IF	CITATIONS
1	A biomimetic ZIF nanoagent for synergistic regulation of glutamine metabolism and intracellular acidosis of cancer. Chemical Communications, 2022, 58, 1554-1557.	4.1	7
2	Improved performance of IT-SOFC by negative thermal expansion Sm _{0.85} Zn _{0.15} MnO ₃ addition in Ba _{0.5} Sr _{0.5} Fe _{0.8} Cu _{0.1} Ti _{0.1} O _{3â^´Î´ } cathode. Journal of Physics Condensed Matter, 2022, 34, 184001.	1.8	5
3	Polyoxometalateâ€Based Nanomaterials Toward Efficient Cancer Diagnosis and Therapy. Chemistry - A European Journal, 2021, 27, 6422-6434.	3.3	22
4	A hybridization-based dual-colorimetric kit for circulating cancer miRNA detection. Chemical Communications, 2021, 57, 6058-6061.	4.1	12
5	Delivery nanoplatforms based on dynamic covalent chemistry. Chemical Communications, 2021, 57, 7067-7082.	4.1	10
6	Frontispiece: Polyoxometalateâ€Based Nanomaterials Toward Efficient Cancer Diagnosis and Therapy. Chemistry - A European Journal, 2021, 27, .	3.3	0
7	CRISPR/Cas-Based In Vitro Diagnostic Platforms for Cancer Biomarker Detection. Analytical Chemistry, 2021, 93, 11899-11909.	6.5	54
8	A dual-catalytic nanoreactor for synergistic chemodynamic-starvation therapy toward tumor metastasis suppression. Biomaterials Science, 2021, 9, 3814-3820.	5.4	20
9	ATP-triggered mitochondrial cascade reactions for cancer therapy with nanoscale zeolitic imidazole framework-90. Theranostics, 2021, 11, 7869-7878.	10.0	25
10	Cyclic chain displacement amplification-based dual-miRNA detection: a triple-line lateral flow strip for the diagnosis of lung cancer. Chemical Communications, 2021, 57, 12301-12304.	4.1	4
11	Engineering C–N Moieties in Branched Nitrogen-Doped Graphite Tubular Foam toward Stable Li ⁺ -Storage at Low Temperature. Industrial & Engineering Chemistry Research, 2020, 59, 5858-5864.	3.7	12
12	A portable point-of-care testing system to diagnose lung cancer through the detection of exosomal miRNA in urine and saliva. Chemical Communications, 2020, 56, 8968-8971.	4.1	26
13	Engineering Platinum–Oxygen Dual Catalytic Sites via Charge Transfer towards Highly Efficient Hydrogen Evolution. Angewandte Chemie, 2020, 132, 17865-17871.	2.0	24
14	Engineering Platinum–Oxygen Dual Catalytic Sites via Charge Transfer towards Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 17712-17718.	13.8	53
15	Fast production of zinc–hexamethylenetetramine complex microflowers as an advanced sulfur reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 5062-5069.	10.3	14
16	Alkaline Double-Network Hydrogels with High Conductivities, Superior Mechanical Performances, and Antifreezing Properties for Solid-State Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 11778-11788.	8.0	116
17	Polysulfide Regulation by the Zwitterionic Barrier toward Durable Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2020, 142, 3583-3592.	13.7	174
18	Anion exchange membrane electrolyte preserving inverse la <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:mover accent="true"><mml:mn>3</mml:mn><mml:mo>‾</mml:mo></mml:mover </mml:mrow>d bicontinuous cubic phase: Effect of microdomain morphology on selective ion transport. Journal of Membrane Science, 2020, 605, 118113.</mml:math 	8.2	15

Fei Lu

#	Article	IF	CITATIONS
19	Al2O3-Based a-IGZO Schottky Diodes for Temperature Sensing. Sensors, 2019, 19, 224.	3.8	12
20	Rapid Preparation of Au–Se–Peptide Nanoprobe Based on a Freezing Method for Bioimaging. Analytical Chemistry, 2019, 91, 15982-15987.	6.5	16
21	Enhancing Capacitance of Nickel Cobalt Chalcogenide via Interface Structural Design. ACS Applied Materials & Interfaces, 2019, 11, 2082-2092.	8.0	20
22	Enhanced Liâ€lonâ€Storage Performance of MoS ₂ through Multistage Structural Design. ChemElectroChem, 2019, 6, 1475-1484.	3.4	12
23	Coâ€assembly of Polyoxometalates and Zwitterionic Amphiphiles into Supramolecular Hydrogels: From Crystalline Fibrillar to Amorphous Micellar Networks. Angewandte Chemie, 2018, 130, 4089-4093.	2.0	11
24	Coâ€assembly of Polyoxometalates and Zwitterionic Amphiphiles into Supramolecular Hydrogels: From Crystalline Fibrillar to Amorphous Micellar Networks. Angewandte Chemie - International Edition, 2018, 57, 4025-4029.	13.8	30
25	Hybrid Poly(ionic liquid) Membranes with in Situ Grown Layered Double Hydroxide and Preserved Liquid Crystal Morphology for Hydroxide Transport. ACS Applied Nano Materials, 2018, 1, 4537-4547.	5.0	15
26	Construction of pHâ€Responsive Supramolecular Assemblies Based on Dynamic Covalent Bonds for Tunable Drug Release. Journal of Surfactants and Detergents, 2018, 21, 593-600.	2.1	1
27	Improved cycling stability of NiS ₂ cathodes through designing a "kiwano―hollow structure. Journal of Materials Chemistry A, 2018, 6, 11978-11984.	10.3	37
28	Substrate Integrated Waveguide (SIW)-Based Wireless Temperature Sensor for Harsh Environments. Sensors, 2018, 18, 1406.	3.8	15
29	Photo and Humidity Responsive Mesoporous Poly(ionic Liquid) Membrane for Selective Dye Adsorption. ChemistrySelect, 2017, 2, 1878-1884.	1.5	13
30	Formation of supermolecular chiral gels from l-aspartic acid-based perylenebisimides and benzene dicarboxylic acids. New Journal of Chemistry, 2017, 41, 7643-7649.	2.8	5
31	Spontaneous wormlike micelles formed in a single-tailed zwitterionic surface-active ionic liquid aqueous solution. Soft Matter, 2017, 13, 2543-2548.	2.7	27
32	The facile construction of an anion exchange membrane with 3D interconnected ionic nano-channels. Chemical Communications, 2017, 53, 767-770.	4.1	14
33	Lithium-Containing Zwitterionic Poly(Ionic Liquid)s as Polymer Electrolytes for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 17756-17763.	3.1	58
34	Low-Molecular-Weight Supramolecular Ionogel Based on Host–Guest Interaction. Langmuir, 2017, 33, 13982-13989.	3.5	36
35	Slot Antenna Integrated Re-Entrant Resonator Based Wireless Pressure Sensor for High-Temperature Applications. Sensors, 2017, 17, 1963.	3.8	21
36	Imidazolium ionic liquid induced one-step synthesis of ?-Fe2O3 nanorods and nanorod assemblies for lithium-ion battery. APL Materials, 2016, 4, .	5.1	6

Fei Lu

#	Article	IF	CITATIONS
37	Aggregation behavior of zwitterionic surface active ionic liquids with different counterions, cations, and alkyl chains. RSC Advances, 2016, 6, 27370-27377.	3.6	13
38	Anion exchange membranes with well-defined ion transporting nanochannels via self-assembly of polymerizable ionic liquids. Journal of Materials Chemistry A, 2016, 4, 13316-13323.	10.3	21
39	Nanostructured proton-conducting membranes based on polymerizable zwitterionic ionic liquid microemulsions. New Journal of Chemistry, 2016, 40, 7580-7586.	2.8	7
40	Photoresponsive Self-Assembly of Surface Active Ionic Liquid. Langmuir, 2016, 32, 8163-8170.	3.5	41
41	Wormlike micelle templated synthesis of mono- and bi-metallic nanochain networks with adjustable structure and constituents. RSC Advances, 2016, 6, 67495-67501.	3.6	4
42	Facile preparation of supramolecular ionogels exhibiting high temperature durability as solid electrolytes. New Journal of Chemistry, 2016, 40, 1169-1174.	2.8	10
43	Temperature-responsive proton-conductive liquid crystals formed by the self-assembly of zwitterionic ionic liquids. RSC Advances, 2015, 5, 63732-63737.	3.6	18
44	Controlled synthesis of α-Fe ₂ O ₃ nanostructures with the assistance of ionic liquid and their distinct photocatalytic performance under visible-light irradiation. CrystEngComm, 2015, 17, 1210-1218.	2.6	20
45	Facile synthesis of gold and gold-based alloy nanowire networks using wormlike micelles as soft templates. Chemical Communications, 2015, 51, 843-846.	4.1	47
46	Nanostructured Proton Conductors Formed via in Situ Polymerization of Ionic Liquid Crystals. ACS Applied Materials & Interfaces, 2014, 6, 21970-21977.	8.0	39
47	Facile one-step preparation of hierarchical α-Fe2O3nanostructures with enhanced performance in energy and environmentally related applications. CrystEngComm, 2014, 16, 9727-9734.	2.6	10
48	Chemical modification of Nafion membranes by protic ionic liquids: the key role of ionomer–cation interactions. Soft Matter, 2014, 10, 7819-7825.	2.7	24
49	Preparation and characterization of composite membranes with BrÃ,nsted acidic ionic liquid. Colloid and Polymer Science, 2014, 292, 2831-2839.	2.1	5
50	Aggregation behavior of alkyl triphenyl phosphonium bromides in aprotic and protic ionic liquids. Colloid and Polymer Science, 2013, 291, 2375-2384.	2.1	19
51	Preparation and Characterization of Nonaqueous Proton-Conducting Membranes with Protic Ionic Liquids. ACS Applied Materials & Interfaces, 2013, 5, 7626-7632.	8.0	39
52	Nanostructured Aqueous Lithium-Ion Conductors Formed by the Self-Assembly of Imidazolium-Type Zwitterions. ACS Applied Materials & Interfaces, 2013, 5, 13312-13317.	8.0	42
53	Research and simulation on minimized common-mode voltage based on SVPWM modulation algorithm. , 2012, , .		0
54	Aqueous dispersion of graphene sheets stabilized by ionic liquid-based polyether. Colloid and Polymer Science, 2012, 290, 1785-1791.	2.1	21

Fei Lu

#	Article	IF	CITATIONS
55	Protein-Decorated Reduced Oxide Graphene Composite and its Application to SERS. ACS Applied Materials & amp; Interfaces, 2012, 4, 3278-3284.	8.0	46
56	Dispersion of multiwalled carbon nanotubes (MWCNTs) by ionic liquid-based Gemini pyrrolidinium surfactants in aqueous solution. Colloid and Polymer Science, 2011, 289, 1815-1819.	2.1	18
57	Refractive index profiles of LiB3O5 waveguides formed by MeV He ion irradiation. Journal of Applied Physics, 2002, 92, 3551-3553.	2.5	4
58	Depth distribution of Bi+ and Fe+ implanted into polyimide (C22H10N2O5)n. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2946-2949.	2.1	0