Simon J Waddell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4160119/publications.pdf

Version: 2024-02-01

		257101	168136
57	3,116	24	53
papers	citations	h-index	g-index
66	66	66	4830
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biofilms in tuberculosis: What have we learnt in the past decade and what is still unexplored?. Tuberculosis, 2022, 132, 102153.	0.8	2
2	Dissecting the Mycobacterium bovis BCG Response to Macrophage Infection to Help Prioritize Targets for Anti-Tuberculosis Drug and Vaccine Discovery. Vaccines, 2022, 10, 113.	2.1	7
3	Searching for new therapeutic options for the uncommon pathogen Mycobacterium chimaera: an open drug discovery approach. Lancet Microbe, The, 2022, 3, e382-e391.	3.4	9
4	Characterisation of drug-resistant Mycobacterium tuberculosis mutations and transmission in Pakistan. Scientific Reports, 2022, 12, 7703.	1.6	7
5	Weighted Gene Co-Expression Network Analysis Identifies Key Modules and Hub Genes Associated with Mycobacterial Infection of Human Macrophages. Antibiotics, 2021, 10, 97.	1.5	8
6	Three-dimensional low shear culture of Mycobacterium bovis BCG induces biofilm formation and antimicrobial drug tolerance. Npj Biofilms and Microbiomes, 2021, 7, 12.	2.9	8
7	Identification of a series of hair-cell MET channel blockers that protect against aminoglycoside-induced ototoxicity. JCI Insight, 2021, 6, .	2.3	27
8	The Mycobacterium tuberculosis sRNA F6 Modifies Expression of Essential Chaperonins, GroEL2 and GroES. Microbiology Spectrum, 2021, 9, e0109521.	1.2	5
9	Undetected carriage explains apparent Staphylococcus aureus acquisition in a non-outbreak healthcare setting. Journal of Infection, 2021, 83, 332-338.	1.7	2
10	Lipid droplets and the transcriptome of Mycobacterium tuberculosis from direct sputa: a literature review. Lipids in Health and Disease, 2021, 20, 129.	1.2	10
11	Identification of antigens presented by MHC for vaccines against tuberculosis. Npj Vaccines, 2020, 5, 2.	2.9	69
12	Multi-Omics Technologies Applied to Tuberculosis Drug Discovery. Applied Sciences (Switzerland), 2020, 10, 4629.	1.3	22
13	Carprofen elicits pleiotropic mechanisms of bactericidal action with the potential to reverse antimicrobial drug resistance in tuberculosis. Journal of Antimicrobial Chemotherapy, 2020, 75, 3194-3201.	1.3	16
14	Characterization of the Mycobacterial MSMEG-3762/63 Efflux Pump in Mycobacterium smegmatis Drug Efflux. Frontiers in Microbiology, 2020, 11, 575828.	1.5	7
15	Spontaneously Occurring Small-Colony Variants of Staphylococcus aureus Show Enhanced Clearance by THP-1 Macrophages. Frontiers in Microbiology, 2020, 11, 1300.	1.5	7
16	Search for Antimicrobial Activity Among Fifty-Two Natural and Synthetic Compounds Identifies Anthraquinone and Polyacetylene Classes That Inhibit Mycobacterium tuberculosis. Frontiers in Microbiology, 2020, 11, 622629.	1.5	9
17	Whole genome sequencing of drug resistant Mycobacterium tuberculosis isolates from a high burden tuberculosis region of North West Pakistan. Scientific Reports, 2019, 9, 14996.	1.6	24
18	Protein kinase B controls <i>Mycobacterium tuberculosis</i> growth via phosphorylation of the transcriptional regulator Lsr2 at threonine 112. Molecular Microbiology, 2019, 112, 1847-1862.	1.2	18

#	Article	IF	CITATIONS
19	Design, Synthesis, and Biological Evaluation of a New Series of Carvedilol Derivatives That Protect Sensory Hair Cells from Aminoglycoside-Induced Damage by Blocking the Mechanoelectrical Transducer Channel. Journal of Medicinal Chemistry, 2019, 62, 5312-5329.	2.9	22
20	Transcriptional Profiling Mycobacterium tuberculosis from Patient Sputa. Methods in Molecular Biology, 2018, 1736, 117-128.	0.4	7
21	A non-canonical mismatch repair pathway in prokaryotes. Nature Communications, 2017, 8, 14246.	5.8	100
22	A Novel TetR-Like Transcriptional Regulator Is Induced in Acid-Nitrosative Stress and Controls Expression of an Efflux Pump in Mycobacteria. Frontiers in Microbiology, 2017, 8, 2039.	1.5	17
23	Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death. JCI Insight, 2017, 2, .	2.3	26
24	Childhood tuberculosis is associated with decreased abundance of T cell gene transcripts and impaired T cell function. PLoS ONE, 2017, 12, e0185973.	1.1	15
25	Advances in Tuberculosis Medicinal Chemistry. , 2016, , .		0
26	Profiling persistent tubercule bacilli from patient sputa during therapy predicts early drug efficacy. BMC Medicine, 2016, 14, 68.	2.3	55
27	Understanding anti-tuberculosis drug efficacy: rethinking bacterial populations and how we model them. International Journal of Infectious Diseases, 2015, 32, 76-80.	1.5	38
28	Oleoyl Coenzyme A Regulates Interaction of Transcriptional Regulator RaaS (Rv1219c) with DNA in Mycobacteria. Journal of Biological Chemistry, 2014, 289, 25241-25249.	1.6	8
29	Antimicrobial Treatment Improves Mycobacterial Survival in Nonpermissive Growth Conditions. Antimicrobial Agents and Chemotherapy, 2014, 58, 2798-2806.	1.4	11
30	Potassium availability triggers <i>Mycobacterium tuberculosis</i> transition to, and resuscitation from, non-culturable (dormant) states. Open Biology, 2014, 4, 140106.	1.5	73
31	Host–Pathogen Interactions. , 2013, , 107-126.		1
32	Mycobacterial P1-Type ATPases Mediate Resistance to Zinc Poisoning in Human Macrophages. Cell Host and Microbe, 2011, 10, 248-259.	5.1	304
33	Distance-based differential analysis of gene curves. Bioinformatics, 2011, 27, 3135-3141.	1.8	24
34	Myocardial depressant effects of interleukin 6 in meningococcal sepsis are regulated by p38 mitogen-activated protein kinase*. Critical Care Medicine, 2011, 39, 1692-1711.	0.4	75
35	Intestinal Injury and Endotoxemia in Children Undergoing Surgery for Congenital Heart Disease. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 1261-1269.	2.5	53
36	Methionine Sulfoximine Resistance in Mycobacterium tuberculosis Is Due to a Single Nucleotide Deletion Resulting in Increased Expression of the Major Glutamine Synthetase, GlnA1. Microbial Drug Resistance, 2011, 17, 351-355.	0.9	10

#	Article	IF	CITATIONS
37	Effects of low incubation temperatures on the bactericidal activity of anti-tuberculosis drugs. Journal of Antimicrobial Chemotherapy, 2011, 66, 146-150.	1.3	9
38	Contrasting Transcriptional Responses of a Virulent and an Attenuated Strain of Mycobacterium tuberculosis Infecting Macrophages. PLoS ONE, 2010, 5, e11066.	1.1	42
39	Examining the basis of isoniazid tolerance in nonreplicating <i>Mycobacterium tuberculosis</i> using transcriptional profiling. Future Medicinal Chemistry, 2010, 2, 1371-1383.	1.1	29
40	Reprogramming the Mycobacterium tuberculosis transcriptome during pathogenesis. Drug Discovery Today Disease Mechanisms, 2010, 7, e67-e73.	0.8	5
41	Use of DNA Arrays to Study Transcriptional Responses to Antimycobacterial Compounds. Methods in Molecular Biology, 2010, 642, 75-91.	0.4	18
42	Dissecting Interferon-Induced Transcriptional Programs in Human Peripheral Blood Cells. PLoS ONE, 2010, 5, e9753.	1.1	134
43	Whole Genome Analysis Using Microarrays. Methods in Molecular Biology, 2009, 465, 83-93.	0.4	0
44	Benzothiazinones Kill <i>Mycobacterium tuberculosis</i> by Blocking Arabinan Synthesis. Science, 2009, 324, 801-804.	6.0	660
45	Adjusting to a new home:Mycobacterium tuberculosisgene expression in response to an intracellular lifestyle. Future Microbiology, 2009, 4, 1317-1335.	1.0	32
46	Microarray analysis of defined Mycobacterium tuberculosis populations using RNA amplification strategies. BMC Genomics, 2008, 9, 94.	1.2	25
47	Cytological and Transcript Analyses Reveal Fat and Lazy Persister-Like Bacilli in Tuberculous Sputum. PLoS Medicine, 2008, 5, e75.	3.9	383
48	Probing Host Pathogen Cross-Talk by Transcriptional Profiling of Both Mycobacterium tuberculosis and Infected Human Dendritic Cells and Macrophages. PLoS ONE, 2008, 3, e1403.	1.1	172
49	Microarray Analysis of Whole Genome Expression of Intracellular Mycobacterium tuberculosis. Current Molecular Medicine, 2007, 7, 287-296.	0.6	36
50	RNA profiling in host–pathogen interactions. Current Opinion in Microbiology, 2007, 10, 297-302.	2.3	31
51	Quantification of global transcription patterns in prokaryotes using spotted microarrays. Genome Biology, 2007, 8, R265.	13.9	34
52	Inactivation of polyketide synthase and related genes results in the loss of complex lipids in Mycobacterium tuberculosis H37Rv. Letters in Applied Microbiology, 2005, 40, 201-206.	1.0	43
53	Acquired predisposition to mycobacterial disease due to autoantibodies to IFN- \hat{l}^3 . Journal of Clinical Investigation, 2005, 115, 2480-2488.	3.9	206
54	Increased transcription of a potential sigma factor regulatory gene Rv1364c inMycobacterium bovisBCG while residing in macrophages indicates use of alternative promoters. FEMS Microbiology Letters, 2004, 233, 333-339.	0.7	15

#	Article	IF	CITATIONS
55	The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis, 2004, 84, 263-274.	0.8	106
56	Increased transcription of a potential sigma factor regulatory gene Rv1364c in Mycobacterium bovis BCG while residing in macrophages indicates use of alternative promoters. FEMS Microbiology Letters, 2004, 233, 333-339.	0.7	7
57	cDNA–RNA subtractive hybridization reveals increased expression of mycocerosic acid synthase in intracellular Mycobacterium bovis BCG. Microbiology (United Kingdom), 2001, 147, 2293-2305.	0.7	29