Clifford Dl Folmes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4159693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myocardial Fatty Acid Metabolism in Health and Disease. Physiological Reviews, 2010, 90, 207-258.	13.1	1,643
2	Somatic Oxidative Bioenergetics Transitions into Pluripotency-Dependent Glycolysis to Facilitate Nuclear Reprogramming. Cell Metabolism, 2011, 14, 264-271.	7.2	866
3	Metabolic Plasticity in Stem Cell Homeostasis and Differentiation. Cell Stem Cell, 2012, 11, 596-606.	5.2	561
4	Cardiac Energy Metabolism in Obesity. Circulation Research, 2007, 101, 335-347.	2.0	238
5	Age-Related Accumulation of Somatic Mitochondrial DNA Mutations in Adult-Derived Human iPSCs. Cell Stem Cell, 2016, 18, 625-636.	5.2	190
6	Interferon Gamma Induces Reversible Metabolic Reprogramming of M1 Macrophages to Sustain Cell Viability and Pro-Inflammatory Activity. EBioMedicine, 2018, 30, 303-316.	2.7	184
7	Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature, 2015, 524, 234-238.	13.7	166
8	1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells. Journal of Biological Chemistry, 2016, 291, 1514-1528.	1.6	164
9	Disease-Causing Mitochondrial Heteroplasmy Segregated Within Induced Pluripotent Stem Cell Clones Derived from a Patient with MELAS. Stem Cells, 2013, 31, 1298-1308.	1.4	112
10	Energy metabolism in the acquisition and maintenance of stemness. Seminars in Cell and Developmental Biology, 2016, 52, 68-75.	2.3	97
11	Mitochondria in Control of Cell Fate. Circulation Research, 2012, 110, 526-529.	2.0	86
12	Energy metabolism plasticity enables stemness programs. Annals of the New York Academy of Sciences, 2012, 1254, 82-89.	1.8	83
13	Role of malonyl-CoA in heart disease and the hypothalamic control of obesity. Cardiovascular Research, 2007, 73, 278-287.	1.8	74
14	Fatty Acids Attenuate Insulin Regulation of 5′-AMP–Activated Protein Kinase and Insulin Cardioprotection After Ischemia. Circulation Research, 2006, 99, 61-68.	2.0	68
15	Metabolic Regulation of Redox Status in Stem Cells. Antioxidants and Redox Signaling, 2014, 21, 1648-1659.	2.5	54
16	Energy metabolism in nuclear reprogramming. Biomarkers in Medicine, 2011, 5, 715-729.	0.6	49
17	Mitochondria in pluripotent stem cells: stemness regulators and disease targets. Current Opinion in Genetics and Development, 2016, 38, 1-7.	1.5	41
18	Fatty acid oxidation inhibitors in the management of chronic complications of atherosclerosis. Current Atherosclerosis Reports, 2005, 7, 63-70.	2.0	36

#	Article	IF	CITATIONS
19	High rates of residual fatty acid oxidation during mild ischemia decrease cardiac work and efficiency. Journal of Molecular and Cellular Cardiology, 2009, 47, 142-148.	0.9	36
20	Metabolome and metaboproteome remodeling in nuclear reprogramming. Cell Cycle, 2013, 12, 2355-2365.	1.3	31
21	Sarcolemmal and mitochondrial effects of a KATP opener, P-1075, in "polarized―and "depolarized― Langendorff-perfused rat hearts. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1618, 39-50.	1.4	12
22	Novel O-palmitolylated beta-E1 subunit of pyruvate dehydrogenase is phosphorylated during ischemia/reperfusion injury. Proteome Science, 2010, 8, 38.	0.7	7
23	Noninvasive Monitoring of the Mitochondrial Function in Mesenchymal Stromal Cells. Molecular Imaging and Biology, 2016, 18, 510-518.	1.3	6
24	Stem cell systems informatics for advanced clinical biodiagnostics: tracing molecular signatures from bench to bedside. Croatian Medical Journal, 2013, 54, 319-329.	0.2	4
25	Uncoupling of proliferative capacity from developmental stage during directed cardiac differentiation of pluripotent stem cells. Stem Cells and Development, 0, , .	1.1	4
26	Diversity of respiratory parameters and metabolic adaptation to low oxygen tension in mesenchymal stromal cells. Metabolism Open, 2022, 13, 100167.	1.4	2