
Davide Bernardini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4159687/publications.pdf Version: 2024-02-01

DAVIDE REDNADDINI

#	Article	IF	CITATIONS
1	Vibration Damping Performances of Buildings with Moving Façades Under Harmonic Excitation. Journal of Vibration Engineering and Technologies, 2023, 11, 381-390.	2.2	3
2	Modeling Non-uniform Corrosion in Reinforced Concrete Bridge Piers. Lecture Notes in Civil Engineering, 2022, , 372-379.	0.4	4
3	A simple numerical approach for the pushover analysis of slender cantilever bridge piers taking into account geometric nonlinearity. Asian Journal of Civil Engineering, 2022, 23, 455-469.	1.6	6
4	A comparison of different approaches to detect the transitions from regular to chaotic motions in SMA oscillator. Meccanica, 2020, 55, 1295-1308.	2.0	4
5	On Positioning and Vibration Control Application to Robotic Manipulators with a Nonideal Load Carrying. Shock and Vibration, 2019, 2019, 1-14.	0.6	8
6	Chaos control of a shape memory alloy structure using thermal constrained actuation. International Journal of Non-Linear Mechanics, 2019, 111, 106-118.	2.6	14
7	Modeling of the temperature rises in multiple friction pendulum bearings by means of thermomechanical rheological elements. Archives of Civil and Mechanical Engineering, 2019, 19, 171-185.	3.8	12
8	Optimization of a Pseudoelastic Absorber for Vibration Mitigation. Procedia Engineering, 2017, 199, 1779-1784.	1.2	2
9	Quantifying rate dependence of hysteretic systems. Procedia Engineering, 2017, 199, 1447-1453.	1.2	4
10	Evaluation of different SMA models performances in the nonlinear dynamics of pseudoelastic oscillators via a comprehensive modeling framework. International Journal of Mechanical Sciences, 2017, 130, 458-475.	6.7	24
11	Using 0–1 test to diagnose chaos on shape memory alloy dynamical systems. Chaos, Solitons and Fractals, 2017, 103, 307-324.	5.1	35
12	Recurrence analysis of regular and chaotic motions of a superelastic shape memory oscillator. ITM Web of Conferences, 2017, 15, 05013.	0.5	2
13	New micromechanical estimates of the interaction energy for shape memory alloys modeled by a two-phases microstructure*. Mathematics and Mechanics of Solids, 2016, 21, 1215-1233.	2.4	3
14	Characterizing the nonlinear behavior of a pseudoelastic oscillator via the wavelet transform. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230, 120-132.	2.1	17
15	A structured continuum modelling framework for martensitic transformation and reorientation in shape memory materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150173.	3.4	2
16	An overview of 0–1 test for chaos. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38, 1433-1450.	1.6	55
17	Overexpression of hypoxia-inducible factor (HIF)-1α in ischemia/reperfusion injury developed in a lung transplantation model. , 2016, , .		0
18	Analysis of localization phenomena in Shape Memory Alloys bars by a variational approach. International Journal of Solids and Structures, 2015, 73-74, 113-133.	2.7	21

DAVIDE BERNARDINI

#	Article	IF	CITATIONS
19	Non-linear dynamics of a thermomechanical pseudoelastic oscillator excited by non-ideal energy sources. International Journal of Non-Linear Mechanics, 2015, 77, 12-27.	2.6	14
20	Influence of hysteresis loop shape on the nonlinear dynamics of shape memory alloy oscillator excited by non-ideal energy sources. , 2014, , .		0
21	Influence of Smart Material on the Dynamical Response of Mechanical Oscillator. Springer Proceedings in Mathematics and Statistics, 2014, , 493-502.	0.2	1
22	Analysis of chaotic non-isothermal solutions of thermomechanical shape memory oscillators. European Physical Journal: Special Topics, 2013, 222, 1637-1647.	2.6	32
23	Identification of regular and chaotic isothermal trajectories of a shape memory oscillator using the 0–1 test. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2013, 227, 17-22.	0.8	11
24	CHAOS ROBUSTNESS AND STRENGTH IN THERMOMECHANICAL SHAPE MEMORY OSCILLATORS PART I: A PREDICTIVE THEORETICAL FRAMEWORK FOR THE PSEUDOELASTIC BEHAVIOR. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 2769-2782.	1.7	19
25	CHAOS ROBUSTNESS AND STRENGTH IN THERMOMECHANICAL SHAPE MEMORY OSCILLATORS PART II: NUMERICAL AND THEORETICAL EVALUATION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 2783-2800.	1.7	18
26	The influence of model parameters and of the thermomechanical coupling on the behavior of shape memory devices. International Journal of Non-Linear Mechanics, 2010, 45, 933-946.	2.6	24
27	Numerical Characterization of the Chaotic Nonregular Dynamics of Pseudoelastic Oscillators. , 2009, , 25-35.		2
28	Shape-Memory Alloys and Effects. , 2008, , .		0
29	Uniaxial Modeling of Multivariant Shape-Memory Materials with Internal Sublooping using Dissipation Functions. Meccanica, 2005, 40, 339-364.	2.0	17
30	Thermomechanical modelling, nonlinear dynamics and chaos in shape memory oscillators. Mathematical and Computer Modelling of Dynamical Systems, 2005, 11, 291-314.	2.2	58
31	Nonlinear thermomechanical oscillations of shape-memory devices. International Journal of Solids and Structures, 2004, 41, 1209-1234.	2.7	83
32	A Multifield Theory for the Modeling of the Macroscopic Behavior of Shape Memory Materials. Modeling and Simulation in Science, Engineering and Technology, 2004, , 199-242.	0.6	5
33	Non-isothermal oscillations of pseudoelastic devices. International Journal of Non-Linear Mechanics, 2003, 38, 1297-1313.	2.6	48
34	Models for one-variant shape memory materials based on dissipation functions. International Journal of Non-Linear Mechanics, 2002, 37, 1299-1317.	2.6	43
35	A Macroscopic Model for Microscopically Heterogeneous Shape Memory Materials. Solid Mechanics and Its Applications, 2002, , 241-248.	0.2	0
36	On the macroscopic free energy functions for shape memory alloys. Journal of the Mechanics and Physics of Solids, 2001, 49, 813-837.	4.8	29

DAVIDE BERNARDINI

#	Article	IF	CITATIONS
37	Models of hysteresis in the framework of thermomechanics with internal variables. Physica B: Condensed Matter, 2001, 306, 132-136.	2.7	8
38	Hysteretic Modeling of Shape Memory Alloy VibrationReduction Devices. Journal of Materials Processings and Manufacturing Science, 2000, 9, 101-112.	0.1	7
39	Flow rules for porous elastic plastic materials. Mechanics Research Communications, 1998, 25, 443-448.	1.8	3
40	Application of a Shape Memory Absorber in Vibration Suppression. Applied Mechanics and Materials, 0, 849, 27-35.	0.2	7