Carolina Montero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4159627/publications.pdf

Version: 2024-02-01

1039406 1125271 13 814 9 13 citations h-index g-index papers 14 14 14 772 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Monitoring Ni O and coke evolution during the deactivation of a Ni/La 2 O 3 –αAl 2 O 3 catalyst in ethanol steam reforming in a fluidized bed. Journal of Catalysis, 2015, 331, 181-192.	3.1	208
2	Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor. International Journal of Hydrogen Energy, 2014, 39, 12586-12596.	3.8	175
3	Reaction pathway for ethanol steam reforming on a Ni/SiO 2 catalyst including coke formation. International Journal of Hydrogen Energy, 2014, 39, 18820-18834.	3.8	131
4	Origin and Nature of Coke in Ethanol Steam Reforming and Its Role in Deactivation of Ni/La ₂ O ₃ 3\$\frac{1}{2}\$ Al ₂ O ₃ Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 14736-14751.	1.8	70
5	Optimum operating conditions in ethanol steam reforming over a Ni/La2O3-αAl2O3 catalyst in a fluidized bed reactor. Fuel Processing Technology, 2018, 169, 207-216.	3.7	58
6	Thermodynamic comparison between bio-oil and ethanol steam reforming. International Journal of Hydrogen Energy, 2015, 40, 15963-15971.	3.8	52
7	Reproducible performance of a Ni/La2O3–αAl2O3 catalyst in ethanol steam reforming under reaction–regeneration cycles. Fuel Processing Technology, 2016, 152, 215-222.	3.7	36
8	Kinetic model considering catalyst deactivation for the steam reforming of bio-oil over Ni/La2O3-αAl2O3. Chemical Engineering Journal, 2018, 332, 192-204.	6.6	36
9	Comparison of Ni and Co Catalysts for Ethanol Steam Reforming in a Fluidized Bed Reactor. Catalysis Letters, 2014, 144, 1134-1143.	1.4	29
10	Catalytic Cracking of Heavy Crude Oil over Iron-Based Catalyst Obtained from Galvanic Industry Wastes. Catalysts, 2020, 10, 736.	1.6	5
11	Waste to Catalyst: Synthesis of Catalysts from Sewage Sludge of the Mining, Steel, and Petroleum Industries. Sustainability, 2020, 12, 9849.	1.6	5
12	Study of the Effects of the Addition of Fly Ash from Carwash Sludge in Lime and Cement Pastes. Sustainability, 2020, 12, 6451.	1.6	4
13	Barras energéticas de sacha inchi: optimización de la formulación mediante diseño estadÃstico de mezclas. Enfoqute, 2022, 13, 58-72.	0.3	2