
Elmar Schiebel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4159341/publications.pdf Version: 2024-02-01

FIMAD SCHIEREL

#	Article	IF	CITATIONS
1	Modular assembly of the principal microtubule nucleator Î ³ -TuRC. Nature Communications, 2022, 13, 473.	5.8	18
2	A perinuclear α-helix with amphipathic features in Brl1 promotes NPC assembly. Molecular Biology of the Cell, 2022, 33, mbcE21120616.	0.9	6
3	Human cells lacking CDC14A and CDC14B show differences in ciliogenesis but not in mitotic progression. Journal of Cell Science, 2021, 134, .	1.2	6
4	The structure of the Î ³ -TuRC: a 25-years-old molecular puzzle. Current Opinion in Structural Biology, 2021, 66, 15-21.	2.6	20
5	Microtubule nucleation: The waltz between Î ³ -tubulin ring complexÂand associated proteins. Current Opinion in Cell Biology, 2021, 68, 124-131.	2.6	45
6	Reconstitution of the recombinant human \hat{I}^3 -tubulin ring complex. Open Biology, 2021, 11, 200325.	1.5	11
7	The N-terminus of Sfi1 and yeast centrin Cdc31 provide the assembly site for a new spindle pole body. Journal of Cell Biology, 2021, 220, .	2.3	7
8	The gammaâ€ŧubulin ring complex: Deciphering the molecular organization and assembly mechanism of a major vertebrate microtubule nucleator. BioEssays, 2021, 43, e2100114.	1.2	8
9	A short perinuclear amphipathic α-helix in Apq12 promotes nuclear pore complex biogenesis. Open Biology, 2021, 11, 210250.	1.5	11
10	The cryo-EM structure of a \hat{I}^3 -TuSC elucidates architecture and regulation of minimal microtubule nucleation systems. Nature Communications, 2020, 11, 5705.	5.8	7
11	Insights into the assembly and activation of the microtubule nucleator Î ³ -TuRC. Nature, 2020, 578, 467-471.	13.7	106
12	The Centrosome Linker and Its Role in Cancer and Genetic Disorders. Trends in Molecular Medicine, 2020, 26, 380-393.	3.5	25
13	CEP44 ensures the formation of bona fide centriole wall, a requirement for the centriole-to-centrosome conversion. Nature Communications, 2020, 11, 903.	5.8	25
14	The balance between KIFC3 and EG5 tetrameric kinesins controls the onset of mitotic spindle assembly. Nature Cell Biology, 2019, 21, 1138-1151.	4.6	41
15	The human phosphatase <scp>CDC</scp> 14A modulates primary cilium length by regulating centrosomal actin nucleation. EMBO Reports, 2019, 20, .	2.0	27
16	STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2246-E2253.	3.3	61
17	Brr6 and Brl1 locate to nuclear pore complex assembly sites to promote their biogenesis. Journal of Cell Biology, 2018, 217, 877-894.	2.3	40
18	Duplication and Nuclear Envelope Insertion of the Yeast Microtubule Organizing Centre, the Spindle Pole Body. Cells, 2018, 7, 42.	1.8	24

Elmar Schiebel

#	Article	IF	CITATIONS
19	The microtubule polymerase Stu2 promotes oligomerization of the γ-TuSC for cytoplasmic microtubule nucleation. ELife, 2018, 7, .	2.8	53
20	Human phosphatase CDC14A regulates actin organization through dephosphorylation of epithelial protein lost in neoplasm. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5201-5206.	3.3	23
21	A ternary membrane protein complex anchors the spindle pole body in the nuclear envelope in budding yeast. Journal of Biological Chemistry, 2017, 292, 8447-8458.	1.6	13
22	Characterization of spindle pole body duplication reveals a regulatory role for nuclear pore complexes. Journal of Cell Biology, 2017, 216, 2425-2442.	2.3	30
23	Polo-like kinase Cdc5 regulates Spc72 recruitment to spindle pole body in the methylotrophic yeast Ogataea polymorpha. ELife, 2017, 6, .	2.8	9
24	MOZART1 and γ-tubulin complex receptors are both required to turn γ-TuSC into an active microtubule nucleation template. Journal of Cell Biology, 2016, 215, 823-840.	2.3	48
25	Duplication of the Yeast Spindle Pole Body Once per Cell Cycle. Molecular and Cellular Biology, 2016, 36, 1324-1331.	1.1	33
26	Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 990-995.	3.3	31
27	Genome editing through large insertion leads to the skipping of targeted exon. BMC Genomics, 2015, 16, 1082.	1.2	15
28	Targeting of Î ³ -tubulin complexes to microtubule organizing centers: conservation and divergence. Trends in Cell Biology, 2015, 25, 296-307.	3.6	127
29	The Centrosomal Linker and Microtubules Provide Dual Levels of Spatial Coordination of Centrosomes. PLoS Genetics, 2015, 11, e1005243.	1.5	57
30	Kar1 binding to Sfi1 C-terminal regions anchors the SPB bridge to the nuclear envelope. Journal of Cell Biology, 2015, 209, 843-861.	2.3	25
31	Molecular Mechanisms that Restrict Yeast Centrosome Duplication to One Event per Cell Cycle. Current Biology, 2014, 24, 1456-1466.	1.8	45
32	Cell-cycle dependent phosphorylation of yeast pericentrin regulates Î ³ -TuSC-mediated microtubule nucleation. ELife, 2014, 3, e02208.	2.8	84
33	GTP regulates the microtubule nucleation activity of Î ³ -tubulin. Nature Cell Biology, 2013, 15, 1317-1327.	4.6	28
34	Spindle pole bodies. Current Biology, 2013, 23, R858-R860.	1.8	25
35	An extended Î ³ -tubulin ring functions as a stable platform in microtubule nucleation. Journal of Cell Biology, 2012, 197, 59-74.	2.3	46
36	Plk1 Controls the Nek2A-PP1Î ³ Antagonism in Centrosome Disjunction. Current Biology, 2011, 21, 1145-1151.	1.8	115

Elmar Schiebel

#	Article	IF	CITATIONS
37	Targeting of Nbp1 to the inner nuclear membrane is essential for spindle pole body duplication. EMBO Journal, 2011, 30, 3337-3352.	3.5	32
38	Phosphorylation of the Yeast Î ³ -Tubulin Tub4 Regulates Microtubule Function. PLoS ONE, 2011, 6, e19700.	1.1	42
39	Segregation of yeast nuclear pores. Nature, 2010, 466, E1-E1.	13.7	45
40	Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nature Cell Biology, 2010, 12, 1166-1176.	4.6	168
41	N-terminal regions of Mps1 kinase determine functional bifurcation. Journal of Cell Biology, 2010, 189, 41-56.	2.3	51
42	Cdc14: a highly conserved family of phosphatases with non-conserved functions?. Journal of Cell Science, 2010, 123, 2867-2876.	1.2	157
43	Vertebrate cells genetically deficient for Cdc14A or Cdc14B retain DNA damage checkpoint proficiency but are impaired in DNA repair. Journal of Cell Biology, 2010, 189, 631-639.	2.3	99
44	The SESA network links duplication of the yeast centrosome with the protein translation machinery. Genes and Development, 2009, 23, 1559-1570.	2.7	73
45	The yeast centrosome translates the positional information of the anaphase spindle into a cell cycle signal. Journal of Cell Biology, 2007, 179, 423-436.	2.3	103
46	TheSaccharomyces cerevisiaeSpindle Pole Body (SPB) Component Nbp1p Is Required for SPB Membrane Insertion and Interacts with the Integral Membrane Proteins Ndc1p and Mps2p. Molecular Biology of the Cell, 2006, 17, 1959-1970.	0.9	42
47	A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast, 2004, 21, 947-962.	0.8	1,837
48	The XMAP215 homologue Stu2 at yeast spindle pole bodies regulates microtubule dynamics and anchorage. EMBO Journal, 2003, 22, 4779-4793.	3.5	71
49	The Bub2p Spindle Checkpoint Links Nuclear Migration with Mitotic Exit. Molecular Cell, 2000, 6, 1-10.	4.5	299
50	Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. , 1999, 15, 963-972.		946
51	Receptors determine the cellular localization of a \hat{i}^3 -tubulin complex and thereby the site of microtubule formation. EMBO Journal, 1998, 17, 3952-3967.	3.5	162
52	Spc98p Directs the Yeast γ-Tubulin Complex into the Nucleus and Is Subject to Cell Cycle-dependent Phosphorylation on the Nuclear Side of the Spindle Pole Body. Molecular Biology of the Cell, 1998, 9, 775-793.	0.9	86
53	Centrosome linker protein Câ€Nap1 maintains stem cells in mouse testes. EMBO Reports, 0, , .	2.0	3