
Scott C Doney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4159340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 2005, 437, 681-686.	27.8	3,772
2	Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 1994, 32, 363.	23.0	3,497
3	Ocean Acidification: The Other CO ₂ Problem. Annual Review of Marine Science, 2009, 1, 169-192.	11.6	3,246
4	Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. Journal of Climate, 2006, 19, 3337-3353.	3.2	2,647
5	Climate Change Impacts on Marine Ecosystems. Annual Review of Marine Science, 2012, 4, 11-37.	11.6	2,117
6	The Community Climate System Model Version 3 (CCSM3). Journal of Climate, 2006, 19, 2122-2143.	3.2	2,075
7	Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2009, 2, 831-836.	12.9	1,746
8	Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 2013, 10, 6225-6245.	3.3	1,191
9	Global Carbon Budget 2018. Earth System Science Data, 2018, 10, 2141-2194.	9.9	1,167
10	Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 2011, 9, 53-60.	4.0	927
11	Global Carbon Budget 2016. Earth System Science Data, 2016, 8, 605-649.	9.9	905
12	Ocean Acidification: Present Conditions and Future Changes in a High-CO2 World. Oceanography, 2009, 22, 36-47.	1.0	841
13	An index to assess the health and benefits of the global ocean. Nature, 2012, 488, 615-620.	27.8	736
14	Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	734
15	Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	694
16	The Growing Human Footprint on Coastal and Open-Ocean Biogeochemistry. Science, 2010, 328, 1512-1516.	12.6	668
17	Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment, 2011, 9, 18-26.	4.0	656
18	The Orbiting Carbon Observatory (OCO) mission. Advances in Space Research, 2004, 34, 700-709.	2.6	596

#	Article	IF	CITATIONS
19	Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 2015, 12, 653-679.	3.3	587
20	Recent Changes in Phytoplankton Communities Associated with Rapid Regional Climate Change Along the Western Antarctic Peninsula. Science, 2009, 323, 1470-1473.	12.6	579
21	The global carbon budget 1959–2011. Earth System Science Data, 2013, 5, 165-185.	9.9	527
22	Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences, 2010, 7, 979-1005.	3.3	520
23	Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 49, 463-507.	1.4	496
24	Iron supply and demand in the upper ocean. Global Biogeochemical Cycles, 2000, 14, 281-295.	4.9	472
25	Oceanic sources, sinks, and transport of atmospheric CO ₂ . Global Biogeochemical Cycles, 2009, 23, .	4.9	455
26	The North Atlantic Spring Phytoplankton Bloom and Sverdrup's Critical Depth Hypothesis. Science, 2002, 296, 730-733.	12.6	446
27	An intermediate complexity marine ecosystem model for the global domain. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 49, 403-462.	1.4	418
28	Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences, 2009, 6, 515-533.	3.3	417
29	Sensitivity to Surface Forcing and Boundary Layer Mixing in a Global Ocean Model: Annual-Mean Climatology. Journal of Physical Oceanography, 1997, 27, 2418-2447.	1.7	410
30	Plankton in a warmer world. Nature, 2006, 444, 695-696.	27.8	404
31	Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences, 2009, 6, 2099-2120.	3.3	399
32	Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 2018, 359, .	12.6	397
33	Global assessment of ocean carbon export by combining satellite observations and foodâ€web models. Global Biogeochemical Cycles, 2014, 28, 181-196.	4.9	368
34	Skill assessment for coupled biological/physical models of marine systems. Journal of Marine Systems, 2009, 76, 4-15.	2.1	365
35	Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 2010, 7, 621-640.	3.3	360
36	Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmospheric Chemistry and Physics, 2010, 10, 10875-10893.	4.9	355

#	Article	lF	CITATIONS
37	Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4601-4605.	7.1	353
38	Global ocean storage of anthropogenic carbon. Biogeosciences, 2013, 10, 2169-2191.	3.3	348
39	Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14580-14585.	7.1	332
40	Inverse estimates of anthropogenic CO2uptake, transport, and storage by the ocean. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	331
41	Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon models. Global Change Biology, 2009, 15, 2462-2484.	9.5	324
42	Precision requirements for space-based data. Journal of Geophysical Research, 2007, 112, .	3.3	322
43	Evolution of carbon sinks in a changing climate. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11201-11206.	7.1	318
44	Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth System Science Data, 2012, 4, 47-73.	9.9	315
45	Global carbon budget 2013. Earth System Science Data, 2014, 6, 235-263.	9.9	311
46	Marine Ecosystem Dynamics and Biogeochemical Cycling in the Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 Scenarios. Journal of Climate, 2013, 26, 9291-9312.	3.2	297
47	The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities. Annual Review of Environment and Resources, 2020, 45, 83-112.	13.4	297
48	Modelling regional responses by marine pelagic ecosystems to global climate change. Geophysical Research Letters, 2002, 29, 53-1-53-4.	4.0	281
49	Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences, 2009, 6, 779-794.	3.3	280
50	Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences, 2013, 10, 1983-2000.	3.3	276
51	Sustained climate warming drives declining marine biological productivity. Science, 2018, 359, 1139-1143.	12.6	276
52	Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sensing of Environment, 2013, 135, 77-91.	11.0	254
53	Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences, 2015, 12, 6955-6984.	3.3	252
54	West Antarctic Peninsula: An Ice-Dependent Coastal Marine Ecosystem in Transition. Oceanography, 2013. 26. 190-203.	1.0	249

#	Article	IF	CITATIONS
55	Anticipating ocean acidification's economic consequences for commercial fisheries. Environmental Research Letters, 2009, 4, 024007.	5.2	247
56	Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. Global Biogeochemical Cycles, 2002, 16, 47-1-47-20.	4.9	234
57	Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nature Communications, 2014, 5, 4318.	12.8	231
58	Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1295-1300.	7.1	228
59	Enhanced CO2outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Global Biogeochemical Cycles, 2007, 21, n/a-n/a.	4.9	226
60	Assessment of skill and portability in regional marine biogeochemical models: Role of multiple planktonic groups. Journal of Geophysical Research, 2007, 112, .	3.3	215
61	Biological ramifications of climate-change-mediated oceanic multi-stressors. Nature Climate Change, 2015, 5, 71-79.	18.8	214
62	A new coupled, one-dimensional biological-physical model for the upper ocean: Applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep-Sea Research Part II: Topical Studies in Oceanography, 1996, 43, 591-624.	1.4	212
63	Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean. Journal of Marine Systems, 2009, 76, 113-133.	2.1	212
64	Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon ycle Model Intercomparison Project (OCMIPâ€2). Global Biogeochemical Cycles, 2007, 21, .	4.9	211
65	Evaluating global ocean carbon models: The importance of realistic physics. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	210
66	Ocean Acidification: A Critical Emerging Problem for the Ocean Sciences. Oceanography, 2009, 22, 16-25.	1.0	210
67	Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data. Journal of Marine Systems, 2009, 76, 95-112.	2.1	204
68	Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Global Biogeochemical Cycles, 2008, 22, .	4.9	202
69	Pelagic functional group modeling: Progress, challenges and prospects. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 459-512.	1.4	200
70	Will ocean acidification affect marine microbes?. ISME Journal, 2011, 5, 1-7.	9.8	200
71	Natural Variability in a Stable, 1000-Yr Global Coupled Climate–Carbon Cycle Simulation. Journal of Climate, 2006, 19, 3033-3054.	3.2	199
72	Eddy-driven sources and sinks of nutrients in the upper ocean: Results from a 0.1° resolution model of the North Atlantic. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	4.9	195

#	Article	IF	CITATIONS
73	Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models. Ocean Modelling, 2002, 4, 89-120.	2.4	192
74	The NCAR Climate System Model Global Ocean Component*. Journal of Climate, 1998, 11, 1287-1306.	3.2	188
75	Biological responses to environmental heterogeneity under future ocean conditions. Global Change Biology, 2016, 22, 2633-2650.	9.5	187
76	Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography. Annual Review of Marine Science, 2016, 8, 185-215.	11.6	183
77	Prediction of the Export and Fate of Global Ocean Net Primary Production: The EXPORTS Science Plan. Frontiers in Marine Science, 2016, 3, .	2.5	179
78	Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation. Global Biogeochemical Cycles, 2007, 21, n/a-n/a.	4.9	178
79	Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO2 fluxes: Physical climate and atmospheric dust. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 640-655.	1.4	169
80	Evaluation of ocean carbon cycle models with data-based metrics. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	168
81	Twentieth-Century Oceanic Carbon Uptake and Storage in CESM1(BGC)*. Journal of Climate, 2013, 26, 6775-6800.	3.2	167
82	Sea–air CO ₂ fluxes in the Southern Ocean for the period 1990–2009. Biogeosciences, 2013, 10, 4037-4054.	3.3	162
83	A chlorofluorocarbon section in the eastern North Atlantic. Deep-sea Research Part A, Oceanographic Research Papers, 1992, 39, 1857-1883.	1.5	158
84	Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport. Global Biogeochemical Cycles, 2007, 21, .	4.9	156
85	Ocean Iron FertilizationMoving Forward in a Sea of Uncertainty. Science, 2008, 319, 162-162.	12.6	156
86	Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BGC). Journal of Climate, 2014, 27, 8981-9005.	3.2	156
87	Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 1483-1516.	1.4	154
88	Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences, 2013, 10, 193-216.	3.3	152
89	Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light. Biogeosciences, 2010, 7, 3941-3959.	3.3	150
90	Challenges of modeling depthâ€integrated marine primary productivity over multiple decades: A case study at BATS and HOT. Global Biogeochemical Cycles, 2010, 24, .	4.9	150

#	Article	IF	CITATIONS
91	Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide. Nature, 1998, 396, 155-159.	27.8	149
92	MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth System Science Data, 2013, 5, 227-239.	9.9	145
93	Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle–climate model ensemble. Global Biogeochemical Cycles, 2009, 23, .	4.9	143
94	And on Top of All That… Coping with Ocean Acidification in the Midst of Many Stressors. Oceanography, 2015, 25, 48-61.	1.0	143
95	The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO ₃ , and opal concentration profiles from the mesopelagic. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	141
96	Ocean Acidification's Potential to Alter Global Marine Ecosystem Services. Oceanography, 2009, 22, 172-181.	1.0	139
97	Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP). Geoscientific Model Development, 2017, 10, 2169-2199.	3.6	137
98	Major challenges confronting marine biogeochemical modeling. Global Biogeochemical Cycles, 1999, 13, 705-714.	4.9	135
99	The role of mesoscale variability on plankton dynamics in the North Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 2199-2226.	1.4	135
100	The Community Climate System Model. Bulletin of the American Meteorological Society, 2001, 82, 2357-2376.	3.3	131
101	An assessment of the Atlantic and Arctic sea–air CO ₂ fluxes, 1990–2009. Biogeosciences, 2013, 10, 607-627.	3.3	131
102	Changes in the North Atlantic Oscillation influence CO ₂ uptake in the North Atlantic over the past 2 decades. Global Biogeochemical Cycles, 2008, 22, .	4.9	127
103	Carbon source/sink information provided by column CO ₂ measurements from the Orbiting Carbon Observatory. Atmospheric Chemistry and Physics, 2010, 10, 4145-4165.	4.9	127
104	Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry. Global Biogeochemical Cycles, 2009, 23, .	4.9	123
105	Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom. Global Biogeochemical Cycles, 2013, 27, 526-540.	4.9	119
106	Food–energy–water implications of negative emissions technologies in a +1.5 °C future. Nature Climate Change, 2020, 10, 920-927.	18.8	117
107	Seasonal variations in the atmospheric O2/N2ratio in relation to the kinetics of air-sea gas exchange. Global Biogeochemical Cycles, 1998, 12, 141-163.	4.9	116
108	An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations. Boundary-Layer Meteorology, 1996, 79, 131-175.	2.3	115

#	Article	IF	CITATIONS
109	Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 560-572.	1.6	114
110	Variational data assimilation for atmospheric CO2. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 359-365.	1.6	113
111	The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview. Frontiers in Marine Science, 2019, 6, .	2.5	111
112	Global satellite-observed daily vertical migrations of ocean animals. Nature, 2019, 576, 257-261.	27.8	111
113	Modeling the Impact of Zooplankton Diel Vertical Migration on the Carbon Export Flux of the Biological Pump. Global Biogeochemical Cycles, 2019, 33, 181-199.	4.9	107
114	Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem. Biogeosciences, 2016, 13, 4023-4047.	3.3	106
115	Analyses and simulations of the upper ocean's response to Hurricane Felix at the Bermuda Testbed Mooring site: 13-23 August 1995. Journal of Geophysical Research, 2002, 107, 25-1-25-29.	3.3	105
116	Contributions of Long-Term Research and Time-Series Observations to Marine Ecology and Biogeochemistry. Annual Review of Marine Science, 2009, 1, 279-302.	11.6	105
117	Carbon and Climate System Coupling on Timescales from the Precambrian to the Anthropocene. Annual Review of Environment and Resources, 2007, 32, 31-66.	13.4	104
118	Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeosciences, 2008, 5, 597-614.	3.3	104
119	Seascapes as a new vernacular for pelagic ocean monitoring, management and conservation. ICES Journal of Marine Science, 2016, 73, 1839-1850.	2.5	100
120	The Dangers of Ocean Acidification. Scientific American, 2006, 294, 58-65.	1.0	99
121	Noble gas constraints on airâ€sea gas exchange and bubble fluxes. Journal of Geophysical Research, 2009, 114, .	3.3	99
122	Rapid decline of the CO ₂ buffering capacity in the North Sea and implications for the North Atlantic Ocean. Global Biogeochemical Cycles, 2007, 21, .	4.9	97
123	What Is the Metabolic State of the Oligotrophic Ocean? A Debate. Annual Review of Marine Science, 2013, 5, 525-533.	11.6	97
124	Mesoscale variability of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite ocean color: Global patterns and spatial scales. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	96
125	Global oceanic emission of ammonia: Constraints from seawater and atmospheric observations. Global Biogeochemical Cycles, 2015, 29, 1165-1178.	4.9	96
126	The subtropical nutrient spiral. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	4.9	93

#	Article	IF	CITATIONS
127	Securing ocean benefits for society in the face of climate change. Marine Policy, 2013, 40, 154-159.	3.2	91
128	Response of the North Atlantic Thermohaline Circulation and Ventilation to Increasing Carbon Dioxide in CCSM3. Journal of Climate, 2006, 19, 2382-2397.	3.2	89
129	Nutrition and income from molluscs today imply vulnerability to ocean acidification tomorrow. Fish and Fisheries, 2012, 13, 182-215.	5.3	88
130	Data-based assessment of environmental controls on global marine nitrogen fixation. Biogeosciences, 2014, 11, 691-708.	3.3	87
131	The Climode Field Campaign: Observing the Cycle of Convection and Restratification over the Gulf Stream. Bulletin of the American Meteorological Society, 2009, 90, 1337-1350.	3.3	86
132	On the Southern Ocean CO ₂ uptake and the role of the biological carbon pump in the 21st century. Global Biogeochemical Cycles, 2015, 29, 1451-1470.	4.9	85
133	Mechanisms Governing Interannual Variability of Upper-Ocean Temperature in a Global Ocean Hindcast Simulation. Journal of Physical Oceanography, 2007, 37, 1918-1938.	1.7	83
134	A comparison of ocean tracer dating techniques on a meridional section in the eastern North Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 603-626.	1.4	82
135	North Pacific carbon cycle response to climate variability on seasonal to decadal timescales. Journal of Geophysical Research, 2006, 111, .	3.3	81
136	Carbon fluxes and pelagic ecosystem dynamics near two western Antarctic Peninsula Adélie penguin colonies: an inverse model approach. Marine Ecology - Progress Series, 2013, 492, 253-272.	1.9	81
137	Does eddyâ€eddy interaction control surface phytoplankton distribution and carbon export in the North Pacific Subtropical Gyre?. Journal of Geophysical Research, 2012, 117, .	3.3	80
138	Ocean and Coastal Acidification off New England and Nova Scotia. Oceanography, 2015, 25, 182-197.	1.0	80
139	Skill assessment in ocean biological data assimilation. Journal of Marine Systems, 2009, 76, 16-33.	2.1	79
140	Developing integrated models of Southern Ocean food webs: Including ecological complexity, accounting for uncertainty and the importance of scale. Progress in Oceanography, 2012, 102, 74-92.	3.2	79
141	Factors challenging our ability to detect long-term trends in ocean chlorophyll. Biogeosciences, 2013, 10, 2711-2724.	3.3	79
142	A model function of the global bomb tritium distribution in precipitation, 1960–1986. Journal of Geophysical Research, 1992, 97, 5481-5492.	3.3	78
143	Photochemistry, mixing and diurnal cycles in the upper ocean. Journal of Marine Research, 1995, 53, 341-369.	0.3	78
144	Biological response to frontal dynamics and mesoscale variability in oligotrophic environments: Biological production and community structure. Journal of Geophysical Research, 2002, 107, 25-1.	3.3	78

#	Article	IF	CITATIONS
145	Climate-mediated changes to mixed-layer properties in the Southern Ocean: assessing the phytoplankton response. Biogeosciences, 2008, 5, 847-864.	3.3	78
146	The multiple fates of sinking particles in the North Atlantic Ocean. Global Biogeochemical Cycles, 2015, 29, 1471-1494.	4.9	76
147	Variability of global net sea–air CO ₂ fluxes over the last three decades using empirical relationships. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 352.	1.6	73
148	Detecting anthropogenic CO ₂ changes in the interior Atlantic Ocean between 1989 and 2005. Journal of Geophysical Research, 2010, 115, .	3.3	72
149	Ventilation of the Deep Western Boundary Current and Abyssal Western North Atlantic: Estimates from Tritium and3He Distributions. Journal of Physical Oceanography, 1994, 24, 638-659.	1.7	71
150	Surface Ocean Fluxes and Water-Mass Transformation Rates in the Coupled NCAR Climate System Model*. Journal of Climate, 1998, 11, 1420-1441.	3.2	71
151	Comparing food web structures and dynamics across a suite of global marine ecosystem models. Ecological Modelling, 2013, 261-262, 43-57.	2.5	71
152	Microbial metabolites in the marine carbon cycle. Nature Microbiology, 2022, 7, 508-523.	13.3	71
153	Geochemical estimates of denitrification in the Arabian Sea and the Bay of Bengal during WOCE. Geophysical Research Letters, 1997, 24, 2549-2552.	4.0	70
154	Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO ₂ . Journal of Geophysical Research, 2008, 113,	3.3	70
155	Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton. ISME Journal, 2015, 9, 1365-1377.	9.8	70
156	Phytoplankton competition during the spring bloom in four plankton functional type models. Biogeosciences, 2013, 10, 6833-6850.	3.3	68
157	Air–sea CO ₂ flux in the Pacific Ocean for the period 1990–2009. Biogeosciences, 2014, 11, 709-734.	3.3	68
158	Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment. Geoscientific Model Development, 2016, 9, 1827-1851.	3.6	68
159	Physical and biogeochemical variability from hours to years at the Bermuda Testbed Mooring site: June 1994–March 1998. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 2105-2140.	1.4	67
160	Recent western South Atlantic bottom water warming. Geophysical Research Letters, 2006, 33, .	4.0	66
161	Dynamics of particulate organic carbon flux in a global ocean model. Biogeosciences, 2014, 11, 1177-1198.	3.3	66
162	COMPARISON OF CULTURED <i>TRICHODESMIUM</i> (CYANOPHYCEAE) WITH SPECIES CHARACTERIZED FROM THE FIELD ¹ . Journal of Phycology, 2012, 48, 196-210.	2.3	65

#	Article	IF	CITATIONS
163	Multicentury changes in ocean and land contributions to the climateâ€earbon feedback. Global Biogeochemical Cycles, 2015, 29, 744-759.	4.9	63
164	Surface-ocean CO2 variability and vulnerability. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 504-511.	1.4	62
165	Geomorphic evolution of soil texture and organic matter in eroding landscapes. Global Biogeochemical Cycles, 2001, 15, 365-381.	4.9	61
166	Assessing the sequestration time scales of some ocean-based carbon dioxide reduction strategies. Environmental Research Letters, 2021, 16, 104003.	5.2	61
167	A synoptic atmospheric surface forcing data set and physical upper ocean model for the U.S. JGOFS Bermuda Atlantic Time-Series Study site. Journal of Geophysical Research, 1996, 101, 25615-25634.	3.3	60
168	From genes to ecosystems: the ocean's new frontier. Frontiers in Ecology and the Environment, 2004, 2, 457-468.	4.0	59
169	From Zero to Hero?: Why Integrated Assessment Modeling of Negative Emissions Technologies Is Hard and How We Can Do Better. Frontiers in Climate, 2019, 1, .	2.8	59
170	Increased multidecadal variability of the North Atlantic Oscillation since 1781. Nature Geoscience, 2008, 1, 844-848.	12.9	56
171	An Integrated Assessment Model for Helping the United States Sea Scallop (Placopecten magellanicus) Fishery Plan Ahead for Ocean Acidification and Warming. PLoS ONE, 2015, 10, e0124145.	2.5	55
172	Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea. Environmental Microbiology, 2012, 14, 1210-1223.	3.8	54
173	Thirtyâ€Three Years of Ocean Benthic Warming Along the U.S. Northeast Continental Shelf and Slope: Patterns, Drivers, and Ecological Consequences. Journal of Geophysical Research: Oceans, 2017, 122, 9399-9414.	2.6	50
174	The effect of boundary conditions on tracer estimates of thermocline ventilation rates. Journal of Marine Research, 1988, 46, 947-965.	0.3	49
175	Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk. Biogeosciences, 2014, 11, 6955-6967.	3.3	49
176	Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries. Journal of Climate, 2013, 26, 4447-4475.	3.2	48
177	Assessing the Health of the U.S. West Coast with a Regional-Scale Application of the Ocean Health Index. PLoS ONE, 2014, 9, e98995.	2.5	48
178	Effect of continental shelf canyons on phytoplankton biomass and community composition along the western Antarctic Peninsula. Marine Ecology - Progress Series, 2015, 524, 11-26.	1.9	48
179	Carbon isotope discrimination of arctic and boreal biomes inferred from remote atmospheric measurements and a biosphere-atmosphere model. Global Biogeochemical Cycles, 2002, 16, 1-1-1-15.	4.9	47
180	Investigating the sources of synoptic variability in atmospheric CO2 measurements over the Northern Hemisphere continents: a regional model study. Tellus, Series B: Chemical and Physical Meteorology, 2004, 56, 35-50.	1.6	47

#	Article	IF	CITATIONS
181	Crossâ€basin comparison of phosphorus stress and nitrogen fixation in Trichodesmium. Limnology and Oceanography, 2009, 54, 1438-1448.	3.1	47
182	Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model. Biogeosciences, 2011, 8, 387-414.	3.3	47
183	Humic substances may control dissolved iron distributions in the global ocean: Implications from numerical simulations. Global Biogeochemical Cycles, 2013, 27, 450-462.	4.9	47
184	Sea–air CO ₂ fluxes in the Indian Ocean between 1990 and 2009. Biogeosciences, 2013, 10, 7035-7052.	3.3	47
185	Climate forcing for dynamics of dissolved inorganic nutrients at Palmer Station, Antarctica: An interdecadal (1993–2013) analysis. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2369-2389.	3.0	47
186	Intrinsic dynamics and stability properties of size-structured pelagic ecosystem models. Journal of Plankton Research, 2002, 24, 533-556.	1.8	46
187	A three-dimensional, multinutrient, and size-structured ecosystem model for the North Atlantic. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	46
188	Interactions between land use change and carbon cycle feedbacks. Global Biogeochemical Cycles, 2017, 31, 96-113.	4.9	46
189	Comparison of methods to determine the anthropogenic CO2 invasion into the Atlantic Ocean. Tellus, Series B: Chemical and Physical Meteorology, 1999, 51, 511-530.	1.6	45
190	Evaluation of the Southern Ocean O ₂ /Arâ€based NCP estimates in a model framework. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 385-399.	3.0	45
191	Penguin Biogeography Along the West Antarctic Peninsula: Testing the Canyon Hypothesis with Palmer LTER Observationsf. Oceanography, 2013, 26, 204-206.	1.0	45
192	Episodic upwelling and dust deposition as bloom triggers in low-nutrient, low-chlorophyll regions. Journal of Geophysical Research, 2011, 116, .	3.3	44
193	Capturing coastal water clarity variability with Landsat 8. Marine Pollution Bulletin, 2019, 145, 96-104.	5.0	44
194	Evaluating triple oxygen isotope estimates of gross primary production at the Hawaii Ocean Timeâ€series and Bermuda Atlantic Timeâ€series Study sites. Journal of Geophysical Research, 2012, 117, .	3.3	43
195	A Framework for a Marine Biodiversity Observing Network Within Changing Continental Shelf Seascapes. Oceanography, 2014, 27, 18-23.	1.0	43
196	Ocean Acidification in the Surface Waters of the Pacific-Arctic Boundary Regions. Oceanography, 2015, 25, 122-135.	1.0	43
197	The Impact of Climate Change and Feedback Processes on the Ocean Carbon Cycle. , 2003, , 157-193.		42
198	Ocean Chlorofluorocarbon and Heat Uptake during the Twentieth Century in the CCSM3. Journal of Climate, 2006, 19, 2366-2381.	3.2	42

12

#	Article	IF	CITATIONS
199	The impact on atmospheric CO ₂ of iron fertilization induced changes in the ocean's biological pump. Biogeosciences, 2008, 5, 385-406.	3.3	42
200	Research frontiers in the analysis of coupled biogeochemical cycles. Frontiers in Ecology and the Environment, 2011, 9, 74-80.	4.0	42
201	Impact of ocean carbon system variability on the detection of temporal increases in anthropogenic CO ₂ . Journal of Geophysical Research, 2008, 113, .	3.3	41
202	Apparent oxygen utilization rates calculated from tritium and helium-3 profiles at the Bermuda Atlantic Time-series Study site. Biogeosciences, 2012, 9, 1969-1983.	3.3	41
203	Dynamics of benthic metabolism, O ₂ , and pCO ₂ in a temperate seagrass meadow. Limnology and Oceanography, 2019, 64, 2586-2604.	3.1	41
204	Antarctic Bottom Water Formation and Deep-Water Chlorofluorocarbon Distributions in a Global Ocean Climate Model. Journal of Physical Oceanography, 2002, 32, 1642-1666.	1.7	40
205	Moist synoptic transport of CO ₂ along the midâ€latitude storm track. Geophysical Research Letters, 2011, 38, .	4.0	40
206	The triple oxygen isotope tracer of primary productivity in a dynamic ocean model. Global Biogeochemical Cycles, 2014, 28, 538-552.	4.9	40
207	The role of direct air capture and negative emissions technologies in the shared socioeconomic pathways towards +1.5 °C and +2 °C futures. Environmental Research Letters, 2021, 16, 114012.	5.2	40
208	Quantifying subtropical North Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles. Geophysical Research Letters, 2015, 42, 4032-4039.	4.0	39
209	Quantifying the Effects of Nutrient Enrichment and Freshwater Mixing on Coastal Ocean Acidification. Journal of Geophysical Research: Oceans, 2019, 124, 9085-9100.	2.6	39
210	Northâ€South asymmetry in the modeled phytoplankton community response to climate change over the 21st century. Global Biogeochemical Cycles, 2013, 27, 1274-1290.	4.9	39
211	Historical and Future Trends in Ocean Climate and Biogeochemistry. Oceanography, 2014, 27, 108-119.	1.0	38
212	THEROLE OFCARBONCYCLEOBSERVATIONS ANDKNOWLEDGE INCARBONMANAGEMENT. Annual Review of Environment and Resources, 2003, 28, 521-558.	13.4	37
213	Sea surface temperature and salinity variability at Bermuda during the end of the Little Ice Age. Paleoceanography, 2008, 23, .	3.0	37
214	The iron budget in ocean surface waters in the 20th and 21st centuries: projections by the Community Earth System Model version 1. Biogeosciences, 2014, 11, 33-55.	3.3	37
215	How Choice of Depth Horizon Influences the Estimated Spatial Patterns and Global Magnitude of Ocean Carbon Export Flux. Geophysical Research Letters, 2018, 45, 4171-4179.	4.0	37
216	The Effect of Using Time-Averaged Winds on Regional Air-Sea CO ₂ Fluxes. Geophysical Monograph Series, 0, , 351-356.	0.1	37

#	Article	IF	CITATIONS
217	Simulations With the Marine Biogeochemistry Library (MARBL). Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002647.	3.8	37
218	Comment on "Modernâ€age buildup of CO ₂ and its effects on seawater acidity and salinity― by Hugo A. Loáiciga. Geophysical Research Letters, 2007, 34, .	4.0	36
219	A lightâ€driven, oneâ€dimensional dimethylsulfide biogeochemical cycling model for the Sargasso Sea. Journal of Geophysical Research, 2008, 113, .	3.3	36
220	Mechanisms controlling dissolved iron distribution in the North Pacific: A model study. Journal of Geophysical Research, 2011, 116, .	3.3	36
221	Decadal Variability and Predictability in the Midlatitude Ocean–Atmosphere System. Journal of Climate, 2000, 13, 1073-1097.	3.2	35
222	Strengthened scientific support for the Endangerment Finding for atmospheric greenhouse gases. Science, 2019, 363, .	12.6	34
223	A global three-dimensional atmosphere-ocean model of methyl bromide distributions. Journal of Geophysical Research, 1998, 103, 16039-16057.	3.3	33
224	Retrospective satellite ocean color analysis of purposeful and natural ocean iron fertilization. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 73, 1-16.	1.4	33
225	Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO ₂ . Global Biogeochemical Cycles, 2014, 28, 1295-1310.	4.9	33
226	Two decades of inorganic carbon dynamics along the West Antarctic Peninsula. Biogeosciences, 2015, 12, 6761-6779.	3.3	33
227	Oceanic heterotrophic bacterial nutrition by semilabile DOM as revealed by data assimilative modeling. Aquatic Microbial Ecology, 2010, 60, 273-287.	1.8	33
228	Observational Needs Supporting Marine Ecosystems Modeling and Forecasting: From the Global Ocean to Regional and Coastal Systems. Frontiers in Marine Science, 2019, 6, .	2.5	32
229	Implications of Future Northwest Atlantic Bottom Temperatures on the American Lobster (<i>Homarus americanus</i>) Fishery. Journal of Geophysical Research: Oceans, 2017, 122, 9387-9398.	2.6	31
230	Projected impacts of future climate change, ocean acidification, and management on the US Atlantic sea scallop (Placopecten magellanicus) fishery. PLoS ONE, 2018, 13, e0203536.	2.5	31
231	The impact of the North Atlantic Oscillation on the uptake and accumulation of anthropogenic CO ₂ by North Atlantic Ocean mode waters. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	30
232	A modeling study of the seasonal oxygen budget of the global ocean. Journal of Geophysical Research, 2007, 112, .	3.3	29
233	Global Ocean Carbon Cycle Modeling. , 2003, , 217-238.		28
234	Investigating the sources of synoptic variability in atmospheric CO2 measurements over the Northern Hemisphere continents: a regional model study. Tellus, Series B: Chemical and Physical Meteorology, 2004, 56, 35-50.	1.6	28

#	Article	IF	CITATIONS
235	Quantifying seasonal air-sea gas exchange processes using noble gas time-series: A design experiment. Journal of Marine Research, 2006, 64, 267-295.	0.3	28
236	Air-sea CO ₂ fluxes and the controls on ocean surface <i>p</i> CO ₂ seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean: a modeling study. Biogeosciences, 2015, 12, 5793-5809.	3.3	28
237	Modeling Ocean Ecosystems: The PARADIGM Program. Oceanography, 2006, 19, 22-51.	1.0	27
238	The <i>δ</i> ¹⁸ 0 of dissolved O ₂ as a tracer of mixing and respiration in the mesopelagic ocean. Global Biogeochemical Cycles, 2009, 23, .	4.9	27
239	When an ecological regime shift is really just stochastic noise. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2438-2439.	7.1	27
240	Marine Biogeochemical Modeling: Recent Advances and Future Challenges. Oceanography, 2001, 14, 93-107.	1.0	27
241	Climatic variability in upper ocean ventilation rates diagnosed using chlorofluorocarbons. Geophysical Research Letters, 1998, 25, 1399-1402.	4.0	26
242	Study of Marine Ecosystems and Biogeochemistry Now and in the Future: Examples of the Unique Contributions from Space. Oceanography, 2010, 23, 104-117.	1.0	25
243	On the Ability of Spaceâ€Based Passive and Active Remote Sensing Observations of CO ₂ to Detect Flux Perturbations to the Carbon Cycle. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1460-1477.	3.3	25
244	Geostatistical Analysis of Mesoscale Spatial Variability and Error in SeaWiFS and MODIS/Aqua Global Ocean Color Data. Journal of Geophysical Research: Oceans, 2018, 123, 22-39.	2.6	25
245	Variability in the mechanisms controlling Southern Ocean phytoplankton bloom phenology in an ocean model and satellite observations. Global Biogeochemical Cycles, 2017, 31, 922-940.	4.9	24
246	Seasonal forcing of summer dissolved inorganic carbon and chlorophyll <i>a</i> on the western shelf of the Antarctic Peninsula. Journal of Geophysical Research, 2010, 115, .	3.3	23
247	Impact of eddy–wind interaction on eddy demographics and phytoplankton community structure in a model of the North Atlantic Ocean. Dynamics of Atmospheres and Oceans, 2011, 52, 80-94.	1.8	23
248	Are the impacts of land use on warming underestimated in climate policy?. Environmental Research Letters, 2017, 12, 094016.	5.2	23
249	Spring–summer net community production, new production, particle export and related water column biogeochemical processes in the marginal sea ice zone of the Western Antarctic Peninsula 2012–2014. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376. 20170177.	3.4	23
250	Attributing ocean acidification to major carbon producers. Environmental Research Letters, 2019, 14, 124060.	5.2	23
251	The ocean's productive deserts. Nature, 1997, 389, 905-906.	27.8	22
252	Impacts of temporal CO ₂ and climate trends on the detection of ocean anthropogenic CO ₂ accumulation. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	22

#	Article	IF	CITATIONS
253	Impact of phytoplankton community size on a linked global ocean optical and ecosystem model. Journal of Marine Systems, 2012, 89, 61-75.	2.1	22
254	Assessing the Impact of Local and Regional Influences on Nitrogen Loads to Buzzards Bay, MA. Frontiers in Marine Science, 0, 3, .	2.5	22
255	Using the Ocean Health Index to Identify Opportunities and Challenges to Improving Southern Ocean Ecosystem Health. Frontiers in Marine Science, 2017, 4, .	2.5	22
256	Estimating the effect of multiple environmental stressors on coral bleaching and mortality. PLoS ONE, 2017, 12, e0175018.	2.5	21
257	A comprehensive global oceanic dataset of helium isotope and tritium measurements. Earth System Science Data, 2019, 11, 441-454.	9.9	21
258	A tritium budget for the North Atlantic. Journal of Geophysical Research, 1993, 98, 18069-18081.	3.3	19
259	The US JGOFS Synthesis and Modeling Project–An introduction. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 49, 1-20.	1.4	19
260	Inter-annual variability in the interhemispheric atmospheric CO2 gradient: contributions from transport and the seasonal rectifier. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 711-722.	1.6	19
261	Impact of variable air-sea O ₂ and CO ₂ fluxes on atmospheric potential oxygen (APO) and land-ocean carbon sink partitioning. Biogeosciences, 2008, 5, 875-889.	3.3	19
262	Phytoplankton Phenology in the North Atlantic: Insights From Profiling Float Measurements. Frontiers in Marine Science, 2020, 7, .	2.5	19
263	Remote sensing observations of ocean physical and biological properties in the region of the Southern Ocean Iron Experiment (SOFeX). Journal of Geophysical Research, 2006, 111, .	3.3	18
264	A regional hindcast model simulating ecosystem dynamics, inorganic carbon chemistry, and ocean acidification in the Gulf of Alaska. Biogeosciences, 2020, 17, 3837-3857.	3.3	18
265	Comparison of methods to determine the anthropogenic CO ₂ invasion into the Atlantic Ocean. Tellus, Series B: Chemical and Physical Meteorology, 2022, 51, 511.	1.6	17
266	The ³ He flux gauge in the Sargasso Sea: a determination of physical nutrient fluxes to the euphotic zone at the Bermuda Atlantic Time-series Site. Biogeosciences, 2015, 12, 5199-5210.	3.3	17
267	The role of negative emissions in meeting China's 2060 carbon neutrality goal. Oxford Open Climate Change, 2021, 1, .	1.3	17
268	A decade of synthesis and modeling in the US Joint Global Ocean Flux Study. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 451-458.	1.4	16
269	Interannual variability of primary production and dissolved organic nitrogen storage in the North Pacific Subtropical Gyre. Journal of Geophysical Research, 2012, 117, .	3.3	16
270	ALOHA From the Edge: Reconciling Three Decades of in Situ Eulerian Observations and Geographic Variability in the North Pacific Subtropical Gyre. Frontiers in Marine Science, 2018, 5, .	2.5	16

#	Article	IF	CITATIONS
271	Modulation of ocean acidification by decadal climate variability in the Gulf of Alaska. Communications Earth & Environment, 2021, 2, .	6.8	16
272	Spatial and temporal trends in summertime climate and water quality indicators in the coastal embayments of Buzzards Bay, Massachusetts. Biogeosciences, 2016, 13, 253-265.	3.3	16
273	Deposition and recirculation of tritium in the North Pacific Ocean. Journal of Geophysical Research, 2004, 109, .	3.3	15
274	Changes in deep-water CO2 concentrations over the last several decades determined from discrete pCO2measurements. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 74, 48-63.	1.4	15
275	Biological and physical controls on O2/Ar, Ar and pCO2 variability at the Western Antarctic Peninsula and in the Drake Passage. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 139, 77-88.	1.4	15
276	In Situ Estimates of Net Primary Production in the Western North Atlantic With Argo Profiling Floats. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006116.	3.0	15
277	Consequences of Anthropogenic Changes in the Sensory Landscape of Marine Animals. , 2019, , 229-264.		15
278	Irreversible thermodynamics and air-sea exchange. Journal of Geophysical Research, 1995, 100, 8541.	3.3	14
279	Using altimetry to help explain patchy changes in hydrographic carbon measurements. Journal of Geophysical Research, 2009, 114, .	3.3	14
280	Understanding, Characterizing, and Communicating Responses to Ocean Acidification: Challenges and Uncertainties. Oceanography, 2015, 25, 30-39.	1.0	14
281	Revising upper-ocean sulfur dynamics near Bermuda: new lessons from 3 years of concentration and rate measurements. Environmental Chemistry, 2016, 13, 302.	1.5	14
282	Eddyâ€Modified Iron, Light, and Phytoplankton Cell Division Rates in the Simulated Southern Ocean. Global Biogeochemical Cycles, 2020, 34, e2019GB006380.	4.9	14
283	Are trends in SeaWiFS chlorophyll time-series unusual relative to historic variability. Acta Oceanologica Sinica, 2010, 29, 1-4.	1.0	13
284	Recurrent seascape units identify key ecological processes along the western Antarctic Peninsula. Global Change Biology, 2018, 24, 3065-3078.	9.5	13
285	A Phytoplankton Model for the Allocation of Gross Photosynthetic Energy Including the Tradeâ€Offs of Diazotrophy. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1796-1816.	3.0	13
286	Comment on "Experimental demonstration of coupling of heat and matter fluxes at a gas-water interface―by Leon F. Phillips. Journal of Geophysical Research, 1995, 100, 14347.	3.3	12
287	Mesoscale variability in time series data: Satellite-based estimates for the U.S. JGOFS Bermuda Atlantic Time-Series Study (BATS) site. Journal of Geophysical Research, 2002, 107, 7-1.	3.3	12
288	The US JGOFS data management experience. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 793-802.	1.4	12

#	Article	IF	CITATIONS
289	Two centuries of limited variability in subtropical North Atlantic thermocline ventilation. Nature Communications, 2012, 3, 803.	12.8	12
290	Ocean circulation and biogeochemistry moderate interannual and decadal surface water <scp>pH</scp> changes in the <scp>Sargasso Sea</scp> . Geophysical Research Letters, 2015, 42, 4931-4939.	4.0	12
291	A Geostatistical Framework for Quantifying the Imprint of Mesoscale Atmospheric Transport on Satellite Trace Gas Retrievals. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9773-9795.	3.3	12
292	Irreversible thermodynamic coupling between heat and matter fluxes across a gas/liquid interface. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1865.	1.7	11
293	The effects of dilution and mixed layer depth on deliberate ocean iron fertilization: 1-D simulations of the southern ocean iron experiment (SOFeX). Journal of Marine Systems, 2008, 71, 112-130.	2.1	11
294	Changes in anthropogenic carbon storage in the Northeast Pacific in the last decade. Journal of Geophysical Research: Oceans, 2016, 121, 4618-4632.	2.6	11
295	The Simulated Biological Response to Southern Ocean Eddies via Biological Rate Modification and Physical Transport. Clobal Biogeochemical Cycles, 2020, 34, e2019CB006385.	4.9	11
296	Exploring the sensitivity of interannual basin-scale air-sea CO2fluxes to variability in atmospheric dust deposition using ocean carbon cycle models and atmospheric CO2inversions. Journal of Geophysical Research, 2007, 112, .	3.3	10
297	Sea–air CO2 flux in the North Atlantic subtropical gyre: Role and influence of Sub-Tropical Mode Water formation. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 91, 57-70.	1.4	10
298	An autonomous, in situ lightâ€dark bottle device for determining community respiration and net community production. Limnology and Oceanography: Methods, 2018, 16, 323-338.	2.0	10
299	Impact of Lagrangian Sea Surface Temperature Variability on Southern Ocean Phytoplankton Community Growth Rates. Global Biogeochemical Cycles, 2021, 35, e2020GB006880.	4.9	10
300	A Climate Change Atlas for the Ocean. Oceanography, 2011, 24, 13-16.	1.0	10
301	The consequences of human-driven ocean acidification for marine life. F1000 Biology Reports, 2009, 1, 36.	4.0	9
302	Reply to a comment by Stephen M. Chiswell on: "Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom―by M. J. Behrenfeld et al. (2013). Global Biogeochemical Cycles, 2013, 27, 1294-1296.	4.9	9
303	Detectability of CO ₂ flux signals by a spaceâ€based lidar mission. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1794-1807.	3.3	9
304	Satellite Remote Sensing and the Marine Biodiversity Observation Network: Current Science and Future Steps. Oceanography, 2021, 34, .	1.0	9
305	Modeling deep ocean shipping noise in varying acidity conditions. Journal of the Acoustical Society of America, 2010, 128, EL130-EL136.	1.1	8
306	Volcano impacts on climate and biogeochemistry in a coupled carbon–climate model. Earth System Dynamics, 2012, 3, 121-136.	7.1	8

#	Article	IF	CITATIONS
307	Quantifying the effects of dynamical noise on the predictability of a simple ecosystem model. Environmetrics, 2004, 15, 337-355.	1.4	7
308	Marine Ecosystems, Biogeochemistry, and Climate. International Geophysics, 2013, 103, 817-842.	0.6	7
309	Scientific Outcomes and Future Challenges of the Ocean Carbon and Biogeochemistry Program. Oceanography, 2014, 27, 106-107.	1.0	7
310	Oxygen and climate dynamics. Nature Climate Change, 2014, 4, 862-863.	18.8	7
311	Sensitivity of 21st Century Ocean Carbon Export Flux Projections to the Choice of Export Depth Horizon. Global Biogeochemical Cycles, 2021, 35, e2020GB006790.	4.9	7
312	Modeling Phytoplankton Blooms and Inorganic Carbon Responses to Sea″ce Variability in the West Antarctic Peninsula. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006227.	3.0	7
313	Values-Based Scenarios of Water Security: Rights to Water, Rights of Waters, and Commercial Water Rights. BioScience, 2021, 71, 1157-1170.	4.9	7
314	Linking deep convection and phytoplankton blooms in the northern Labrador Sea in a changing climate. PLoS ONE, 2018, 13, e0191509.	2.5	7
315	The ups and downs of ocean oxygen. Nature Geoscience, 2013, 6, 515-516.	12.9	6
316	Modeling the effect of water quality on the recreational shellfishing cultural ecosystem service of Buzzards Bay, Massachusetts. Marine Pollution Bulletin, 2019, 140, 364-373.	5.0	6
317	Modeling of the Influence of Sea Ice Cycle and Langmuir Circulation on the Upper Ocean Mixed Layer Depth and Freshwater Distribution at the West Antarctic Peninsula. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016109.	2.6	6
318	Annual Mixed Layer Carbon Budget for the West Antarctic Peninsula Continental Shelf: Insights From Yearâ€Round Mooring Measurements. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016920.	2.6	6
319	Surface ocean CO2 variability and vulnerability workshop, Paris, France, 11–14 April 2007. Eos, 2007, 88, 287-287.	0.1	5
320	WAP-1D-VAR v1.0: development and evaluation of a one-dimensional variational data assimilation model for the marine ecosystem along the West Antarctic Peninsula. Geoscientific Model Development, 2021, 14, 4939-4975.	3.6	5
321	Transitioning global change experiments on Southern Ocean phytoplankton from lab to field settings: Insights and challenges. Limnology and Oceanography, 2022, 67, 1911-1930.	3.1	4
322	On the detection of summertime terrestrial photosynthetic variability from its atmospheric signature. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	3
323	Extending the record of photosynthetic activity in the eastern United States into the presatellite period using surface diurnal temperature range. Geophysical Research Letters, 2005, 32, .	4.0	3
324	Models: Tools for Synthesis in International Oceanographic Research Programs. Oceanography, 2010, 23, 126-139.	1.0	3

#	Article	lF	CITATIONS
325	Ocean Acidification: The Other CO2 Problem. Limnology and Oceanography E-Lectures, 2011, 3, 1.	0.0	3
326	Assessing the Skill of a High-Resolution Marine Biophysical Model Using Geostatistical Analysis of Mesoscale Ocean Chlorophyll Variability From Field Observations and Remote Sensing. Frontiers in Marine Science, 2021, 8, .	2.5	3
327	Correction to "Recent western South Atlantic bottom water warming― Geophysical Research Letters, 2006, 33, .	4.0	2
328	Solutions to Environmental Threats. Scientific American, 2010, 302, 58-60.	1.0	2
329	Evaluating Southern Ocean biological production in two ocean biogeochemical models on daily to seasonal timescales using satellite chlorophyll and O ₂ / Ar observations. Biogeosciences, 2015, 12, 681-695.	3.3	2
330	An Atmospheric Constraint on the Seasonal Air‣ea Exchange of Oxygen and Heat in the Extratropics. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017510.	2.6	2
331	Spatial Structure of the SeaWiFS Ocean Color Data for the North Atlantic Ocean. Lecture Notes in Statistics, 2000, , 153-171.	0.2	2
332	Bomb Tritium in the Deep North Atlantic. Oceanography, 1992, 5, 169-170.	1.0	1
333	Modeling of Ocean Carbon System. , 2019, , 291-302.		1
334	Modeling polar marine ecosystem functions guided by bacterial physiological and taxonomic traits. Biogeosciences, 2022, 19, 117-136.	3.3	1
335	Recent advances in the ocean carbon system. Eos, 2005, 86, 399.	0.1	0
336	Advancing the Integration of Marine Ecosystem Dynamics and Biogeochemistry: Second Annual Ocean Carbon and Biogeochemistry Summer Workshop; Woods Hole, Massachusetts, 23-26 July 2007. Eos, 2007, 88, 504-504.	0.1	0
337	Ocean Carbon Cycling and Climate Impacts on Marine Ecosystems: Third Annual Ocean Carbon and Biogeochemistry Summer Science Workshop 2008; Woods Hole, Massachusetts, 21-24 July 2008. Eos, 2008, 89, 472-472.	0.1	0
338	Dedication to Dr. Taro Takahashi. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 503.	1.4	0
339	Correction to "Using altimetry to help explain patchy changes in hydrographic carbon measurements― Journal of Geophysical Research, 2009, 114, .	3.3	0
340	Multidisciplinary Perspectives in Marine Biogeochemistry and Ecology: Fourth Annual Ocean Carbon and Biogeochemistry Summer Workshop; Woods Hole, Massachusetts, 20–23 July 2009. Eos, 2009, 90, 414.	0.1	0
341	A Catalyst for Ocean Acidification Research and Collaboration: Ocean Carbon and Biogeochemistry Short Course on Ocean Acidification; Woods Hole, Massachusetts, 2-13 November 2009. Eos, 2010, 91, 112-112.	0.1	0
342	Ecosystems and Biogeochemical Cycling in a Changing Ocean: Fifth Annual Ocean Carbon and Biogeochemistry Summer Workshop; La Jolla, California, 19–22 July 2010. Eos, 2010, 91, 407-407.	0.1	0