Davide Bochicchio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4159187/publications.pdf

Version: 2024-02-01

201385 205818 2,412 53 27 48 citations h-index g-index papers 56 56 56 2508 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polystyrene perturbs the structure, dynamics, and mechanical properties of DPPC membranes: An experimental and computational study. Journal of Colloid and Interface Science, 2022, 605, 110-119.	5.0	15
2	Ion-bridges and lipids drive aggregation of same-charge nanoparticles on lipid membranes. Nanoscale, 2022, 14, 6912-6921.	2.8	9
3	Amphiphilic Gold Nanoparticles: A Biomimetic Tool to Gain Mechanistic Insights into Peptide-Lipid Interactions. Membranes, 2022, 12, 673.	1.4	5
4	Discordant Supramolecular Fibres Reversibly Depolymerised by Temperature and Light. Chemistry - A European Journal, 2021, 27, 1829-1838.	1.7	3
5	Living supramolecular polymerization of fluorinated cyclohexanes. Nature Communications, 2021, 12, 3134.	5.8	49
6	Cholesterol Hinders the Passive Uptake of Amphiphilic Nanoparticles into Fluid Lipid Membranes. Journal of Physical Chemistry Letters, 2021, 12, 8583-8590.	2.1	12
7	Controlling Exchange Pathways in Dynamic Supramolecular Polymers by Controlling Defects. ACS Nano, 2021, 15, 14229-14241.	7.3	19
8	Toward Chemotactic Supramolecular Nanoparticles: From Autonomous Surface Motion Following Specific Chemical Gradients to Multivalency-Controlled Disassembly. ACS Nano, 2021, 15, 16149-16161.	7.3	6
9	Amphiphilic nanoparticles generate curvature in lipid membranes and shape liposome–liposome interfaces. Nanoscale, 2021, 13, 16879-16884.	2.8	13
10	Identifying and Tracking Defects in Dynamic Supramolecular Polymers. Journal of Physical Chemistry B, 2020, 124, 589-599.	1.2	35
11	Amphiphilic gold nanoparticles perturb phase separation in multidomain lipid membranes. Nanoscale, 2020, 12, 19746-19759.	2.8	23
12	<i>Swarm-CG</i> : Automatic Parametrization of Bonded Terms in MARTINI-Based Coarse-Grained Models of Simple to Complex Molecules <i>via</i> Fuzzy Self-Tuning Particle Swarm Optimization. ACS Omega, 2020, 5, 32823-32843.	1.6	49
13	Self-Sorted, Random, and Block Supramolecular Copolymers via Sequence Controlled, Multicomponent Self-Assembly. Journal of the American Chemical Society, 2020, 142, 7606-7617.	6.6	151
14	Biomimetic Synthesis of Sub-20 nm Covalent Organic Frameworks in Water. Journal of the American Chemical Society, 2020, 142, 3540-3547.	6.6	68
15	Symbiotic Self-Assembly Strategy toward Lipid-Encased Cross-Linked Polymer Nanoparticles for Efficient Gene Silencing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 24971-24983.	4.0	18
16	How Defects Control the Out-of-Equilibrium Dissipative Evolution of a Supramolecular Tubule. ACS Nano, 2019, 13, 4322-4334.	7.3	48
17	Insights into the Kinetics of Supramolecular Comonomer Incorporation in Water. Macromolecules, 2019, 52, 3049-3055.	2.2	14
18	Three-Dimensional Directionality Is a Pivotal Structural Feature for the Bioactivity of Azabisphosphonate-Capped Poly(PhosphorHydrazone) Nanodrug Dendrimers. Biomacromolecules, 2018, 19, 712-720.	2.6	18

#	Article	IF	CITATIONS
19	Molecular modelling of supramolecular polymers. Advances in Physics: X, 2018, 3, 1436408.	1.5	42
20	Supramolecular Copolymerization as a Strategy to Control the Stability of Selfâ€Assembled Nanofibers. Angewandte Chemie - International Edition, 2018, 57, 6843-6847.	7.2	44
21	From isodesmic to highly cooperative: reverting the supramolecular polymerization mechanism in water by fine monomer design. Chemical Communications, 2018, 54, 4112-4115.	2.2	35
22	How the Dynamics of a Supramolecular Polymer Determines Its Dynamic Adaptivity and Stimuli-Responsiveness: Structure–Dynamics–Property Relationships From Coarse-Grained Simulations. Journal of Physical Chemistry B, 2018, 122, 4169-4178.	1.2	21
23	Supramolecular Copolymerization as a Strategy to Control the Stability of Selfâ€Assembled Nanofibers. Angewandte Chemie, 2018, 130, 6959-6963.	1.6	12
24	Nitrobenzoxadiazole-Appended Cell Membrane Modifiers for Efficient Optoporation with Noncoherent Light. Bioconjugate Chemistry, 2018, 29, 2068-2073.	1.8	8
25	A Block Supramolecular Polymer and Its Kinetically Enhanced Stability. Journal of the American Chemical Society, 2018, 140, 10570-10577.	6.6	112
26	Crystalline Cyclophane–Protein Cage Frameworks. ACS Nano, 2018, 12, 8029-8036.	7.3	39
27	Au Nanoparticles in Lipid Bilayers: A Comparison between Atomistic and Coarse-Grained Models. Journal of Physical Chemistry C, 2017, 121, 10927-10935.	1.5	61
28	From Cooperative Self-Assembly to Water-Soluble Supramolecular Polymers Using Coarse-Grained Simulations. ACS Nano, 2017, 11, 1000-1011.	7.3	82
29	Molecular photoswitches mediating the strain-driven disassembly of supramolecular tubules. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11850-11855.	3.3	70
30	Effect of Concentration on the Supramolecular Polymerization Mechanism via Implicit-Solvent Coarse-Grained Simulations of Water-Soluble 1,3,5-Benzenetricarboxamide. Journal of Physical Chemistry Letters, 2017, 8, 3813-3819.	2.1	25
31	Into the Dynamics of a Supramolecular Polymer at Submolecular Resolution. Nature Communications, 2017, 8, 147.	5.8	106
32	Interaction of hydrophobic polymers with model lipid bilayers. Scientific Reports, 2017, 7, 6357.	1.6	56
33	Heteroaggregation of ceramic colloids in suspensions. Advances in Physics: X, 2017, 2, 35-53.	1.5	12
34	The Membrane Bending Modulus in Experiments and Simulations. Advances in Biomembranes and Lipid Self-Assembly, 2016, , 117-143.	0.3	24
35	Structures and segregation patterns of Ag–Cu and Ag–Ni nanoalloys adsorbed on MgO(0 0 1). Journal of Physics Condensed Matter, 2016, 28, 064005.	0.7	23
36	Aggregation of binary colloidal suspensions on attractive walls. Physical Chemistry Chemical Physics, 2016, 18, 3073-3079.	1.3	1

#	Article	IF	Citations
37	Calculating the free energy of transfer of small solutes into a model lipid membrane: Comparison between metadynamics and umbrella sampling. Journal of Chemical Physics, 2015, 143, 144108.	1.2	57
38	MARTINI Coarse-Grained Models of Polyethylene and Polypropylene. Journal of Physical Chemistry B, 2015, 119, 8209-8216.	1.2	82
39	Monolayer-Protected Anionic Au Nanoparticles Walk into Lipid Membranes Step by Step. Journal of Physical Chemistry Letters, 2015, 6, 3175-3179.	2.1	79
40	Computation of shear viscosity of colloidal suspensions by SRD-MD. Journal of Chemical Physics, 2015, 142, 144101.	1.2	11
41	Compact and ordered colloidal clusters from assembly–disassembly cycles: A numerical study. Journal of Colloid and Interface Science, 2015, 440, 198-203.	5.0	5
42	Study of the B1-B2 transition in colloidal clusters. Journal of Chemical Physics, 2014, 140, 024911.	1.2	4
43	Chemical ordering in magic-size Ag–Pd nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 26478-26484.	1.3	28
44	Tuning the Structure of Nanoparticles by Small Concentrations of Impurities. Chemistry of Materials, 2014, 26, 3354-3356.	3.2	44
45	Competition between structural motifs in gold–platinum nanoalloys. Computational and Theoretical Chemistry, 2013, 1021, 177-182.	1.1	25
46	Competition between Icosahedral Motifs in AgCu, AgNi, and AgCo Nanoalloys: A Combined Atomistic–DFT Study. Journal of Physical Chemistry C, 2013, 117, 26405-26413.	1.5	124
47	Aggregation in Colloidal Suspensions: Evaluation of the Role of Hydrodynamic Interactions by Means of Numerical Simulations. Journal of Physical Chemistry B, 2013, 117, 14509-14517.	1.2	32
48	Morphological instability of core-shell metallic nanoparticles. Physical Review B, 2013, 87, .	1.1	209
49	Kinetically driven ordered phase formation in binary colloidal crystals. Physical Review E, 2013, 87, 022304.	0.8	9
50	Aggregation kinetics and gel formation in modestly concentrated suspensions of oppositely charged model ceramic colloids: a numerical study. Physical Chemistry Chemical Physics, 2012, 14, 1431-1439.	1.3	26
51	Transition from core–shell to Janus chemical configuration for bimetallic nanoparticles. Nanoscale, 2012, 4, 3381.	2.8	163
52	Structure and thermal stability of AgCu chiral nanoparticles. European Physical Journal D, 2012, 66, 1.	0.6	43
53	Size-Dependent Transition to High-Symmetry Chiral Structures in AgCu, AgCo, AgNi, and AuNi Nanoalloys. Nano Letters, 2010, 10, 4211-4216.	4.5	141