S Jannicke Moe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4158482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Science of the Total Environment, 2010, 408, 4007-4019.	8.0	756
2	Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology and Evolution, 2020, 4, 1060-1068.	7.8	336
3	Combined and interactive effects of global climate change and toxicants on populations and communities. Environmental Toxicology and Chemistry, 2013, 32, 49-61.	4.3	266
4	Recent advances in ecological stoichiometry: insights for population and community ecology. Oikos, 2005, 109, 29-39.	2.7	174
5	Bayesian belief networks as a meta-modelling tool in integrated river basin management — Pros and cons in evaluating nutrient abatement decisions under uncertainty in a Norwegian river basin. Ecological Economics, 2008, 66, 91-104.	5.7	146
6	Strength and uncertainty of phytoplankton metrics for assessing eutrophication impacts in lakes. Hydrobiologia, 2013, 704, 127-140.	2.0	125
7	Effects of multiple stressors on cyanobacteria abundance vary with lake type. Global Change Biology, 2018, 24, 5044-5055.	9.5	84
8	Catchment properties and the photosynthetic trait composition of freshwater plant communities. Science, 2019, 366, 878-881.	12.6	80
9	Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach. Ecological Modelling, 2016, 337, 330-347.	2.5	74
10	Ecological threshold responses in European lakes and their applicability for the Water Framework Directive (WFD) implementation: synthesis of lakes results from the REBECCA project. Aquatic Ecology, 2008, 42, 317-334.	1.5	72
11	Simulating water quality and ecological status of Lake VansjÃ, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network. Science of the Total Environment, 2018, 621, 713-724.	8.0	69
12	A new broad typology for rivers and lakes in Europe: Development and application for large-scale environmental assessments. Science of the Total Environment, 2019, 697, 134043.	8.0	68
13	DENSITY-DEPENDENT COMPENSATION IN BLOWFLY POPULATIONS GIVE INDIRECTLY POSITIVE EFFECTS OF A TOXICANT. Ecology, 2002, 83, 1597-1603.	3.2	60
14	Macroinvertebrate indicators of lake acidification: analysis of monitoring data from UK, Norway and Sweden. Aquatic Ecology, 2008, 42, 293-305.	1.5	53
15	The influence of global climate change on the scientific foundations and applications of Environmental Toxicology and Chemistry: Introduction to a SETAC international workshop. Environmental Toxicology and Chemistry, 2013, 32, 13-19.	4.3	48
16	Modelling phosphorus loading and algal blooms in a Nordic agricultural catchment-lake system under changing land-use and climate. Environmental Sciences: Processes and Impacts, 2014, 16, 1588-1599.	3.5	47
17	REBECCA databases: experiences from compilation and analyses of monitoring data from 5,000 lakes in 20 European countries. Aquatic Ecology, 2008, 42, 183-201.	1.5	46
18	Eutrophication, recovery and temperature in Lake MjĄ̃sa: detecting trends with monitoring data and sediment records. Freshwater Biology, 2012, 57, 1998-2014.	2.4	42

#	Article	IF	CITATIONS
19	Increased Use of Bayesian Network Models Has Improved Environmental Risk Assessments. Integrated Environmental Assessment and Management, 2021, 17, 53-61.	2.9	42
20	Nutrient optima and tolerances of benthic invertebrates, the effects of taxonomic resolution and testing of selected metrics in lakes using an extensive European data base. Aquatic Ecology, 2008, 42, 277-291.	1.5	41
21	Transcriptional Regulation in Liver and Testis Associated with Developmental and Reproductive Effects in Male Zebrafish Exposed to Natural Mixtures of Persistent Organic Pollutants (POP). Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 72, 112-130.	2.3	41
22	Effects of a toxicant on population growth rates: sublethal and delayed responses in blowfly populations. Functional Ecology, 2001, 15, 712-721.	3.6	39
23	Integrated assessment of ecological status and misclassification of lakes: The role of uncertainty and index combination rules. Ecological Indicators, 2015, 48, 605-615.	6.3	31
24	Site-specific chlorophyll reference conditions for lakes in Northern and Western Europe. Hydrobiologia, 2009, 633, 59-66.	2.0	29
25	Global climate change and contaminants, a call to arms not yet heard?. Integrated Environmental Assessment and Management, 2014, 10, 483-484.	2.9	29
26	The WISER way of organising ecological data from European rivers, lakes, transitional and coastal waters. Hydrobiologia, 2013, 704, 11-28.	2.0	26
27	Density dependence in blowfly populations: experimental evaluation of non-parametric time-series modelling. Oikos, 2002, 98, 523-533.	2.7	25
28	Quantification of an Adverse Outcome Pathway Network by Bayesian Regression and Bayesian Network Modeling. Integrated Environmental Assessment and Management, 2021, 17, 147-164.	2.9	25
29	Climateâ€driven range retraction of an Arctic freshwater crustacean. Freshwater Biology, 2012, 57, 2591-2601.	2.4	22
30	Machine Learning Approaches for Predicting Health Risk of Cyanobacterial Blooms in Northern European Lakes. Water (Switzerland), 2020, 12, 1191.	2.7	19
31	Using Bayesian network models to incorporate uncertainty in the economic analysis of pollution abatement measures under the water framework directive. Water Science and Technology: Water Supply, 2005, 5, 95-104.	2.1	19
32	From patterns to processes and back: analysing density-dependent responses to an abiotic stressor by statistical and mechanistic modelling. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2133-2142.	2.6	17
33	Development of a hybrid Bayesian network model for predicting acute fish toxicity using multiple lines of evidence. Environmental Modelling and Software, 2020, 126, 104655.	4.5	17
34	Predicting Lake Quality for the Next Generation: Impacts of Catchment Management and Climatic Factors in a Probabilistic Model Framework. Water (Switzerland), 2019, 11, 1767.	2.7	16
35	EXPLORING THE DENSITY-DEPENDENT STRUCTURE OF BLOWFLY POPULATIONS BY NONPARAMETRIC ADDITIVE MODELING. Ecology, 2001, 82, 2645-2658.	3.2	14
36	Assessing macroinvertebrate metrics for classifying acidified rivers across northern Europe. Freshwater Biology, 2010, 55, 1382-1404.	2.4	14

#	Article	IF	CITATIONS
37	Individual heterogeneity and early life conditions shape growth in a freshwater top predator. Ecology, 2018, 99, 1011-1017.	3.2	14
38	The WISER metadatabase: the key to more than 100 ecological datasets from European rivers, lakes and coastal waters. Hydrobiologia, 2013, 704, 29-38.	2.0	13
39	Unravelling the effect of flow regime on macroinvertebrates and benthic algae in regulated versus unregulated streams. Ecohydrology, 2018, 11, e1996.	2.4	13
40	A single pulse of diffuse contaminants alters the size distribution of natural phytoplankton communities. Science of the Total Environment, 2019, 683, 578-588.	8.0	11
41	Size―and stageâ€dependence in causeâ€specific mortality of migratory brown trout. Journal of Animal Ecology, 2020, 89, 2122-2133.	2.8	9
42	Development of a Bayesian network for probabilistic risk assessment of pesticides. Integrated Environmental Assessment and Management, 2022, 18, 1072-1087.	2.9	9
43	Seasonal forecasting of lake water quality and algal bloom risk using a continuous Gaussian Bayesian network. Hydrology and Earth System Sciences, 2022, 26, 3103-3124.	4.9	9
44	Cross-taxon responses to elevated nutrients in European streams and lakes. Aquatic Sciences, 2014, 76, 51-60.	1.5	8
45	Effects of an aquaculture pesticide (diflubenzuron) on non-target shrimp populations: Extrapolation from laboratory experiments to the risk of population decline. Ecological Modelling, 2019, 413, 108833.	2.5	8
46	Using Bayesian hierarchical modelling to capture cyanobacteria dynamics in Northern European lakes. Water Research, 2020, 186, 116356.	11.3	8
47	Evaluation of a Bayesian Network for Strengthening the Weight of Evidence to Predict Acute Fish Toxicity from Fish Embryo Toxicity Data. Integrated Environmental Assessment and Management, 2020, 16, 452-460.	2.9	8
48	Resilience of Natural Phytoplankton Communities to Pulse Disturbances from Micropollutant Exposure and Vertical Mixing. Environmental Toxicology and Chemistry, 2019, 38, 2197-2208.	4.3	7
49	Exploring the Density-Dependent Structure of Blowfly Populations by Nonparametric Additive Modeling. Ecology, 2001, 82, 2645.	3.2	6
50	Life-history data on Hunder brown trout (Salmo trutta) from Lake MjÃ,sa, Norway. Freshwater Metadata Journal, 0, , 1-11.	0.0	4
51	Time series of plankton data from Lake MjÃ,sa, Norway. Freshwater Metadata Journal, 0, , 1-9.	0.0	3
52	Long-term mark-recapture and growth data for large-sized migratory brown trout (Salmo trutta) from Lake MjĀʻsa, Norway. Biodiversity Data Journal, 2020, 8, e52157.	0.8	3
53	Weight of evidence tools in the prediction of acute fish toxicity. Integrated Environmental Assessment and Management, 2023, 19, 1220-1234.	2.9	3
54	ECORISK2050: An Innovative Training Network for predictingÂthe effects of global change on the emission, fate, effects, and risks of chemicals in aquatic ecosystems. Open Research Europe, 0, 1, 154.	2.0	3

#	Article	IF	CITATIONS
55	Density Dependence in Ecological Risk Assessment. , 2007, , 69-92.		2
56	Phytoplankton and other monitoring data from Lake VansjÃ, Freshwater Metadata Journal, 0, , 1-8.	0.0	2
57	Pharmaceutical pollution: Prediction of environmental concentrations from national wholesales data. Open Research Europe, 0, 2, 71.	2.0	1
58	Empirical Approaches to Population-Level Ecological Risk Assessment. , 2007, , 151-177.		0
59	ECORISK2050: An Innovative Training Network for predictingÂthe effects of global change on the emission, fate, effects, and risks of chemicals in aquatic ecosystems. Open Research Europe, 0, 1, 154.	2.0	0
60	Density-Dependent Compensation in Blowfly Populations Give Indirectly Positive Effects of a Toxicant. Ecology, 2002, 83, 1597.	3.2	0