Karu P Esselle

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4158320/karu-p-esselle-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

4,598 278 38 58 h-index g-index citations papers 6,338 6.27 405 2.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
278	Increasing the Gain of Beam-Tilted Circularly Polarized Radial-Line Slot Array Antennas. <i>IEEE Transactions on Antennas and Propagation</i> , 2022 , 1-1	4.9	1
277	Space Efficient Meta-grid Lines for Mutual Coupling Reduction in Two-Port Planar Monopole and DRA Array. <i>IEEE Access</i> , 2022 , 1-1	3.5	1
276	Advancements and artificial intelligence approaches in antennas for environmental sensing 2022 , 19-3	8	7
275	Flexible and Transparent Circularly Polarized Patch Antenna for Reliable Unobtrusive Wearable Wireless Communications <i>Sensors</i> , 2022 , 22,	3.8	2
274	All-Metal Wideband Frequency-Selective Surface Bandpass Filter for TE and TM polarizations. <i>IEEE Transactions on Antennas and Propagation</i> , 2022 , 1-1	4.9	18
273	Darkening Low-Earth Orbit Satellite Constellations: A Review. <i>IEEE Access</i> , 2022 , 10, 24383-24394	3.5	2
272	5G Extender Antenna Systems to Enhance Indoor Millimetre-Wave Reception. <i>PoliTO Springer Series</i> , 2022 , 1-27	0.4	
271	Accurate optimization technique for phase-gradient metasurfaces used in compact near-field meta-steering systems <i>Scientific Reports</i> , 2022 , 12, 4118	4.9	O
270	The Use of a Pair of 3D-Printed Near Field Superstructures to Steer an Antenna Beam in Elevation and Azimuth. <i>IEEE Access</i> , 2021 , 9, 153995-154010	3.5	2
269	All-metal wideband metasurface for near-field transformation of medium-to-high gain electromagnetic sources. <i>Scientific Reports</i> , 2021 , 11, 9421	4.9	39
268	Distinguished Lecturer Program News And New Appointments [Distinguished Lecturers]. <i>IEEE Antennas and Propagation Magazine</i> , 2021 , 63, 138-141	1.7	
267	. IEEE Transactions on Antennas and Propagation, 2021 , 69, 3193-3203	4.9	9
266	A dielectric free near field phase transforming structure for wideband gain enhancement of antennas. <i>Scientific Reports</i> , 2021 , 11, 14613	4.9	1
265	. IEEE Access, 2021 , 9, 109080-109093	3.5	5
264	An Electronically-Tunable, Flexible and Transparent Antenna with Unidirectional Radiation Pattern. <i>IEEE Access</i> , 2021 , 1-1	3.5	4
263	Use of Narrower Reflection Cancelling Slots to Design Linearly Polarized Radial Line Slot Arrays with Improved Radiation Performance. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2021 , 1-1	3.8	2
262	A Beam-Steering Solution with Highly Transmitting Hybrid Metasurfaces and Circularly Polarized High-Gain Radial-Line Slot Array Antennas. <i>IEEE Transactions on Antennas and Propagation</i> , 2021 , 1-1	4.9	8

(2020-2021)

261	. IEEE Transactions on Antennas and Propagation, 2021 , 69, 4447-4456	4.9	3	
260	Ultra Wideband Beam-steering at mm-wave Frequency with Planar Dielectric Phase Transformers. IEEE Transactions on Antennas and Propagation, 2021, 1-1	4.9	3	
259	Optically Transparent Flexible Robust Circularly Polarized Antenna for UHF RFID Tags. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2020 , 19, 2334-2338	3.8	8	
258	. IEEE Transactions on Antennas and Propagation, 2020 , 68, 3453-3464	4.9	22	
257	Low-Cost Ultrawideband High-Gain Compact Resonant Cavity Antenna. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2020 , 19, 1271-1275	3.8	5	
256	A Method to Develop Flexible Robust Optically Transparent Unidirectional Antennas Utilizing Pure Water, PDMS, and Transparent Conductive Mesh. <i>IEEE Transactions on Antennas and Propagation</i> , 2020 , 68, 6943-6952	4.9	12	
255	2020,		O	
254	Experimental studies of the robustness of the conductive-mesh-polymer composite towards the development of conformal and transparent antennas. <i>Smart Materials and Structures</i> , 2020 , 29, 085015	3.4	5	
253	. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2020 , 5, 89-98	1.5	15	
252	Low-Cost All-Metal Resonant-Cavity Antenna for High Power Applications 2020,		1	
251	Low-Cost Nonuniform Metallic Lattice for Rectifying Aperture Near-Field of Electromagnetic Bandgap Resonator Antennas. <i>IEEE Transactions on Antennas and Propagation</i> , 2020 , 68, 3328-3335	4.9	46	
250	Millimeter-Wave Low-Loss Multifeed Superstrate-Based Antenna. <i>IEEE Transactions on Antennas and Propagation</i> , 2020 , 68, 3387-3396	4.9	4	
249	. IEEE Access, 2020 , 8, 225336-225346	3.5	2	
248	. IEEE Access, 2020 , 8, 224922-224931	3.5	1	
247	Recent Advances in Near-Field Meta-Steering 2020 ,		1	
246	A Beam Squinted Linearly Polarised Radial Line Slot Array Antenna with Improved Return Loss Bandwidth 2020 ,		2	
245	Call for IEEE AP-S Distinguished Lecturer Nominations. <i>IEEE Antennas and Propagation Magazine</i> , 2020 , 62, 127-127	1.7		
244	Increasing the transparency of compact flexible antennas using defected ground structure for unobtrusive wearable technologies. <i>IET Microwaves, Antennas and Propagation</i> , 2020 , 14, 1869-1877	1.6	4	

243	Controlling the Most Significant Grating Lobes in Two-Dimensional Beam-Steering Systems With Phase-Gradient Metasurfaces. <i>IEEE Transactions on Antennas and Propagation</i> , 2020 , 68, 1389-1401	4.9	20
242	A Low-profile and Efficient Front-End Antenna for Point-to-Point Wireless Communication Links 2020 ,		1
241	. IEEE Access, 2020 , 8, 139422-139432	3.5	8
240	Distinguished Lectures on Radio Astronomy and Training the Next Generation [Distinguished Lecturers]. <i>IEEE Antennas and Propagation Magazine</i> , 2020 , 62, 140-145	1.7	
239	3D Printable Lightweight Porous Superstrate for Improved Radiation Performance of Antenna 2020 ,		1
238	A Double Layer Circularly Polarised Radial Line Slot Array Antenna with Uniform Aperture Illumination 2020 ,		1
237	Recent Developments and State of the Art in Flexible and Conformal Reconfigurable Antennas. <i>Electronics (Switzerland)</i> , 2020 , 9, 1375	2.6	11
236	. IEEE Access, 2020 , 8, 208532-208542	3.5	5
235	. IEEE Access, 2020 , 8, 199242-199253	3.5	24
234	IEEE AP-S Holds First Distinguished Lecture in Entrepreneurship Category [Distinguished Lecturers]. <i>IEEE Antennas and Propagation Magazine</i> , 2020 , 62, 104-112	1.7	
233	Meet the New Distinguished Lecturers for 2019-2021 [Distinguished Lecturers]. <i>IEEE Antennas and Propagation Magazine</i> , 2019 , 61, 136-138	1.7	
232	Eddy Current T unneling Magneto-Resistive Sensor for Micromotion Detection of a Tibial Orthopaedic Implant. <i>IEEE Sensors Journal</i> , 2019 , 19, 1285-1292	4	8
231	Design and analysis of m-segment fractal boundary antennas. <i>Microwave and Optical Technology Letters</i> , 2019 , 61, 2119-2125	1.2	
230	A Stripline-Based Planar Wideband Feed for High-Gain Antennas with Partially Reflecting Superstructure. <i>Micromachines</i> , 2019 , 10,	3.3	3
229	Resonant Cavity Antennas 2019 , 1-20		
228			2
	Compact On-Body Antennas for Wearable Communication Systems 2019 ,		3
227	Compact On-Body Antennas for Wearable Communication Systems 2019 , High-Gain Low-Profile Chip-Fed Resonant Cavity Antennas for Millimeter-Wave Bands. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2019 , 18, 2394-2398	3.8	8

225	3-D-Printed Phase-Rectifying Transparent Superstrate for Resonant-Cavity Antenna. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2019 , 18, 1400-1404	3.8	23
224	Broadband Partially Reflecting Superstrate-Based Antenna for 60 GHz Applications. <i>IEEE Transactions on Antennas and Propagation</i> , 2019 , 67, 4854-4859	4.9	17
223	Bending Analysis of Switchable Frequency Selective Surface Based on Flexible Composite Substrate 2019 ,		2
222	Additively Manufactured Perforated Superstrate to Improve Directive Radiation Characteristics of Electromagnetic Source. <i>IEEE Access</i> , 2019 , 7, 153445-153452	3.5	28
221	Investigating Small Aperture Radial Line Slot Array Antennas for Medium Gain Communication Links 2019 ,		3
220	Distinguished Lecturer Program Update [Distinguished Lecturers]. <i>IEEE Antennas and Propagation Magazine</i> , 2019 , 61, 120-120	1.7	
219	Compact Beam-Steered Resonant-Cavity Antenna Using Near-Field Phase Transformation 2019,		2
218	Millimeter-Wave Broadband Antennas With Low Profile Dielectric Covers. <i>IEEE Access</i> , 2019 , 7, 186228-	·1 <u>&</u> 623	5 ₇
217	A Passive Beam Reconfigurable Antenna System for Millimeter-wave Applications 2019,		1
216	Analyzing the Coupling from Radiating Slots in a Double-Layered Radial Line Slot Array Antenna 2019 ,		2
215	Differentially Fed CDRA Array with Phase Inverter for High Gain and Reduced Cross Polarization 2019 ,		2
214	Wideband and high-gain circularly polarised microstrip antenna design using sandwiched metasurfaces and partially reflecting surface. <i>IET Microwaves, Antennas and Propagation</i> , 2019 , 13, 305-	-3 ¹ 12	13
213	Wideband Near-Field Correction of a FabryPerot Resonator Antenna. <i>IEEE Transactions on Antennas and Propagation</i> , 2019 , 67, 1975-1980	4.9	53
212	Single-Dielectric Wideband Partially Reflecting Surface With Variable Reflection Components for Realization of a Compact High-Gain Resonant Cavity Antenna. <i>IEEE Transactions on Antennas and Propagation</i> , 2019 , 67, 1916-1921	4.9	57
211	UWB Wearable Antenna With a Full Ground Plane Based on PDMS-Embedded Conductive Fabric. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2018 , 17, 493-496	3.8	73
210	A high gain radial line slot array antenna for satellite reception 2018,		3
209	Making UWB Antennas Unidirectional: Phase Coherence with an Ultra-Wide Band Frequency Selective Surface Reflector 2018 , 227-258		
208	Integrated GSM-UWB Fibonacci-type antennas with single, dual, and triple notched bands. <i>IET Microwaves, Antennas and Propagation</i> , 2018 , 12, 1004-1012	1.6	13

207	. IEEE Transactions on Antennas and Propagation, 2018, 66, 4343-4348	4.9	35
206	A Method to Realize Robust Flexible Electronically Tunable Antennas Using Polymer-Embedded Conductive Fabric. <i>IEEE Transactions on Antennas and Propagation</i> , 2018 , 66, 50-58	4.9	57
205	2018,		2
204	A Low-Profile Beam-Tilted Antenna Array for Receiving Direct-Broadcast Satellite Services 2018 ,		9
203	2018,		4
202	A Wideband Circularly Polarized Dielectric Resonator Antenna over A Metasurface 2018,		2
201	2018,		3
200	A Linearly Polarised Radial Line Slot Array Antenna with Reflection Cancelling Slots 2018,		1
199	A Low-Profile, Planar, Power-Efficient 2D Beam-Steering Antenna Technology 2018 ,		1
198	Sidelobe Suppression in Resonant Cavity Antennas through Near-field Analysis 2018 ,		1
197	A Low-Profile Phase Correcting Solution to Improve Directivity of Horn Antenna 2018,		3
196	Electromagnetic-wave beam-scanning antenna using near-field rotatable graded-dielectric plates. Journal of Applied Physics, 2018 , 124, 234901	2.5	34
195	Investigation on Aperture Field Distribution of Circularly Polarised Radial Line Slot Array Antennas 2018 ,		3
194	Design, Modeling, and Evaluation of the Eddy Current Sensor Deeply Implanted in the Human Body. <i>Sensors</i> , 2018 , 18,	3.8	3
193	Improving radiation performance of extremely truncated RCAs through near-field analysis. <i>IET Microwaves, Antennas and Propagation</i> , 2018 , 12, 1954-1959	1.6	3
192	A Metasurface to Focus Antenna Beam at Offset Angle 2018 ,		7
191	Polydimethylsiloxane-Embedded Conductive Fabric: Characterization and Application for Realization of Robust Passive and Active Flexible Wearable Antennas. <i>IEEE Access</i> , 2018 , 6, 48102-4811	2 ^{3.5}	28
190	A Methodology to Design a Low-Profile Composite-Dielectric Phase-Correcting Structure. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2018 , 17, 1223-1227	3.8	19

189	Design and Characterization of a Flexible Wideband Antenna Using Polydimethylsiloxane Composite Substrate. <i>International Journal of Antennas and Propagation</i> , 2018 , 2018, 1-6	1.2	16
188	Pulse-preserving characteristics and effective isotropically radiated power spectra of a new ultrawideband dielectric resonator antenna. <i>IET Microwaves, Antennas and Propagation</i> , 2018 , 12, 1231-	-1238	3
187	Steering the Beam of Medium-to-High Gain Antennas Using Near-Field Phase Transformation. <i>IEEE Transactions on Antennas and Propagation</i> , 2017 , 65, 1680-1690	4.9	103
186	. IEEE Access, 2017 , 5, 8804-8811	3.5	14
185	Achieving a Large Gain-Bandwidth Product From a Compact Antenna. <i>IEEE Transactions on Antennas and Propagation</i> , 2017 , 65, 3437-3446	4.9	29
184	Directive array based pattern reconfigurable antenna 2017,		4
183	Performance of embroidered higher-order mode antennas with different stitching patterns 2017,		1
182	Forward and Backward Beam-Scanning Tri-Band Leaky-Wave Antenna. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2017 , 16, 1891-1894	3.8	22
181	. IEEE Transactions on Antennas and Propagation, 2017 , 65, 5532-5540	4.9	16
180	Investigation of large directivity bandwidth in multilayer resonant cavity antennas 2017,		1
179	Dual-Band Dual-Mode Textile Antenna on PDMS Substrate for Body-Centric Communications. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2017 , 16, 677-680	3.8	100
178	Multiobjective Particle Swarm Optimization to Design a Time-Delay Equalizer Metasurface for an		
	Electromagnetic Band-Gap Resonator Antenna. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2017 , 16, 912-915	3.8	102
177	Electromagnetic Band-Gap Resonator Antenna. IEEE Antennas and Wireless Propagation Letters,	3.8	102
177 176	Electromagnetic Band-Gap Resonator Antenna. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2017 , 16, 912-915	3.8	
	Electromagnetic Band-Gap Resonator Antenna. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2017 , 16, 912-915 Preliminary investigations into a simple and effective rectenna for RF energy harvesting 2017 ,	3.8	3
176	Electromagnetic Band-Gap Resonator Antenna. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2017 , 16, 912-915 Preliminary investigations into a simple and effective rectenna for RF energy harvesting 2017 , 2017 ,	3.8	3
176 175	Electromagnetic Band-Gap Resonator Antenna. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2017, 16, 912-915 Preliminary investigations into a simple and effective rectenna for RF energy harvesting 2017, 2017, Highly Efficient Leaky-Wave Antenna Array for 28-GHz Millimeter-Wave Terminals 2017,	3.8 4.9	3 1 2

171	Design of an artificial magnetic conductor surface using an evolutionary algorithm 2017,		17
170	The use of near-field phase transformation to design a low-profile azimuthal beam scanning antenna system 2017 ,		1
169	Design and Improvement of Pattern Quality in Circularly Polarised Slot Array Antenna for Direct Broadcast Satellite Applications 2017 ,		2
168	ADDITIVE MANUFACTURING OF A DUAL-RIDGED HORN ANTENNA. <i>Progress in Electromagnetics Research Letters</i> , 2016 , 59, 109-114	0.5	4
167	2016,		8
166	An ultra-compact integrated millimeter-wave coupled-line resonator and a bandpass filter in silicon-germanium technology 2016 ,		4
165	A planar feeding technique for wideband, low-profile resonant cavity antennas 2016,		3
164	Enhancing the performance of EBG resonator antennas by individually truncating the superstructure layers. <i>IET Microwaves, Antennas and Propagation</i> , 2016 , 10, 1048-1055	1.6	7
163	2016,		6
162	A simple dual-band dual-mode antenna for off-/on-body centric communications 2016,		6
161	2016,		9
160	A printed UWB antenna with full ground plane for WBAN applications 2016,		14
159	Metal-based materials for the development of implanted bio-devices (Invited paper) 2016,		1
158	A dual-mode reconfigurable patch antenna and an extended transmission line model. <i>Microwave and Optical Technology Letters</i> , 2016 , 58, 57-61	1.2	2
157	. IEEE Transactions on Antennas and Propagation, 2016 , 64, 1262-1269	4.9	51
156	Design and measurements of a tri-band one-dimensional electromagnetic bandgap resonator antenna. <i>IET Microwaves, Antennas and Propagation</i> , 2016 , 10, 168-172	1.6	4
155	A Broadside-Coupled Meander-Line Resonator in 0.13- \$mu text{m}\$ SiGe Technology for Millimeter-Wave Application. <i>IEEE Electron Device Letters</i> , 2016 , 37, 329-332	4.4	50
154	A Class of Extremely Wideband Resonant Cavity Antennas With Large Directivity-Bandwidth Products. <i>IEEE Transactions on Antennas and Propagation</i> , 2016 , 64, 830-835	4.9	53

(2015-2016)

153	A Low-Profile Printed Planar Phase Correcting Surface to Improve Directive Radiation Characteristics of Electromagnetic Band Gap Resonator Antennas. <i>IEEE Transactions on Antennas and Propagation</i> , 2016 , 64, 276-280	4.9	54	
152	EXTENDED TRANSMISSION-LINE MODELLING OF INSET-FED RECONFIGURABLE RECTANGULAR MICROSTRIP ANTENNAS. <i>Progress in Electromagnetics Research B</i> , 2016 , 68, 123-140	0.7		
151	A dual-band half-width microstrip leaky-wave antenna for beam scanning in the forward and backward directions 2016 ,		4	
150	. IEEE Transactions on Antennas and Propagation, 2016 , 64, 2146-2154	4.9	65	
149	Development of Wireless Transducer for Real-Time Remote Patient Monitoring. <i>IEEE Sensors Journal</i> , 2016 , 16, 4669-4670	4	12	
148	On-body antennas: Design considerations and challenges 2016 ,		5	
147	Double-layer embroidery strategy for fabrication of textile antennas with improved efficiency 2016 ,		3	
146	An extremely wideband Fabry-Perot cavity antenna for superfast wireless backhaul applications 2016 ,		2	
145	Directivity improvement of a Fabry-Perot cavity antenna by enhancing near field characteristic 2016 ,		10	
144	Performance analysis of classical and phase-corrected electromagnetic band gap resonator antennas with all-dielectric superstructures. <i>IET Microwaves, Antennas and Propagation</i> , 2016 , 10, 1276	-1284	2	
143	Advantages and limitations of 3D printing a dual-ridged horn antenna. <i>Microwave and Optical Technology Letters</i> , 2016 , 58, 2110-2117	1.2	1	
142	A High-Gain Dual-Band EBG Resonator Antenna with Circular Polarization. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2015 , 14, 108-111	3.8	38	
141	A wideband EBG resonator antenna with an extremely small footprint area. <i>Microwave and Optical Technology Letters</i> , 2015 , 57, 1531-1535	1.2	20	
140	Periodic U-Slot-Loaded Dual-Band Half-Width Microstrip Leaky-Wave Antennas for Forward and Backward Beam Scanning. <i>IEEE Transactions on Antennas and Propagation</i> , 2015 , 63, 5372-5381	4.9	54	
139	Quasi-analytical synthesis of continuous phase correcting structures to increase the directivity of circularly polarized Fabry-Perot resonator antennas. <i>Journal of Applied Physics</i> , 2015 , 117, 214902	2.5	10	
138	An Array of Half-Width Microstrip Leaky-Wave Antennas Radiating on Boresight. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2015 , 14, 112-114	3.8	21	
137	The Applications of Metamaterials. <i>International Journal of Antennas and Propagation</i> , 2015 , 2015, 1-2	1.2	0	
136	EQUIVALENT-CIRCUIT MODELS FOR EFFICIENT TRANSMISSION AND DISPERSION ANALYSES OF MULTI-STATE PERIODIC STRUCTURES. <i>Progress in Electromagnetics Research</i> , 2015 , 153, 93-102	3.8	5	

135	Dielectric Phase-Correcting Structures for Electromagnetic Band Gap Resonator Antennas. <i>IEEE Transactions on Antennas and Propagation</i> , 2015 , 63, 3390-3399	4.9	51
134	A low-profile dielectric resonator antenna for wideband applications 2015 ,		1
133	Conical beaming using simple arrays of uniform half-width microstrip leaky-wave antennas 2015,		1
132	Reconfigurable antenna options for 2.45/5 GHz wireless body area networks in healthcare applications. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2015 , 2015, 5465-8	0.9	3
131	High-gain dual-band dual-polarised electromagnetic band gap resonator antenna with an all-dielectric superstructure. <i>IET Microwaves, Antennas and Propagation</i> , 2015 , 9, 1059-1065	1.6	9
130	A switchable printed antenna with a ground plane for 2.45/5 GHz wireless body area networks 2015 ,		3
129	IEEE Access Special Section Editorial: Bio-Compatible Devices and Bio-Electromagnetics for Bio-Medical Applications. <i>IEEE Access</i> , 2015 , 3, 3119-3121	3.5	
128	Millimeter-wave frequency reconfigurable T-shaped antenna for 5G networks 2015,		14
127	Reconfigurable antennas with narrowband and ultra wideband modes 2015,		3
126	Directive beaming with lens-like superstates for low profile Fabry-Perot cavity antennas 2014,		2
125	. IEEE Transactions on Microwave Theory and Techniques, 2014 , 62, 1890-1897	4.1	24
124	A Simple Ultra Wideband Printed Monopole Antenna With High Band Rejection and Wide Radiation Patterns. <i>IEEE Transactions on Antennas and Propagation</i> , 2014 , 62, 4816-4820	4.9	47
123	An armband-wearable printed antenna with a full ground plane for body area networks 2014,		8
122	Effects of Printed UWB Antenna Miniaturization on Pulse Fidelity and Pattern Stability. <i>IEEE Transactions on Antennas and Propagation</i> , 2014 , 62, 3903-3910	4.9	35
121	. IEEE Transactions on Electromagnetic Compatibility, 2014 , 56, 1404-1411	2	120
120	. IEEE Transactions on Antennas and Propagation, 2014 , 62, 2970-2977	4.9	80
119	Efficient Numerical Analysis of a Periodic Structure of Multistate Unit Cells. <i>International Journal of Antennas and Propagation</i> , 2014 , 2014, 1-6	1.2	
118	AN ULTRA-WIDEBAND QUASI-PLANAR ANTENNA WITH ENHANCED GAIN. <i>Progress in Electromagnetics Research C</i> , 2014 , 49, 59-65	0.9	1

117	SHARED-APERTURE DUAL-BAND DUAL-POLARIZATION ARRAY USING SANDWICHED STACKED PATCH. <i>Progress in Electromagnetics Research C</i> , 2014 , 52, 183-195	0.9	1
116	Implantable compact antennas for wireless bio-telemetry: A comparative study 2014,		1
115	A low-profile single-layer UWB polarization stable FSS for electromagnetic shielding applications 2014 ,		2
114	Fixed-frequency leaky-wave antenna for simultaneous forward and backward scanning 2014,		3
113	Measuring radiotelescope phased array feed noise and sensitivity 2014,		5
112	A printed dual band antenna with a ground plane and electromagnetically-coupled feed for wireless body area networks 2014 ,		4
111	Four-branch microstrip leaky-wave antenna array for radiation towards broadside 2014,		2
110	A transmission polarizer based on width-modulated lines and slots 2013 ,		4
109	Planar ultra-wideband antenna with five notched stop bands. <i>Electronics Letters</i> , 2013 , 49, 579-580	1.1	23
108	A low-profile dual-layer ultra-wideband frequency selective surface reflector. <i>Microwave and Optical Technology Letters</i> , 2013 , 55, 1223-1227	1.2	21
107	Microwave Characterization of Carbon Nanotube Yarns For UWB Medical Wireless Body Area Networks. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2013 , 61, 3625-3631	4.1	8
106	Stub-loaded printed antenna with a ground plane and electromagnetically coupled feed for 2.45GHz body area networks 2013 ,		5
105	A simple resonant cavity antenna with improved directivity-bandwidth performance for high-capacity wireless data links 2013 ,		1
104	Polarization stable ultra-wide-band Frequency Selective Surface for Ku- and K- band applications 2013 ,		2
103	A Compact Super-Wideband Antenna Pair With Polarization Diversity. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2013 , 12, 1472-1475	3.8	29
102	An implantable PIFA antenna with a J-shaped proximity feed for RFID telemetry 2013,		3
101	Effective Electromagnetic Shielding over an ultra-wide bandwidth using a Frequency Selective Surface 2013 ,		2
100	Changing the Electromagnetic Bandgap and Stopbands in a Multistate Periodic Circuit. <i>Microwave and Optical Technology Letters</i> , 2013 , 55, 1871-1874	1.2	8

99	Compact super-wideband asymmetric monopole antenna with dual-branch feed for bandwidth enhancement. <i>Electronics Letters</i> , 2013 , 49, 515-516	1.1	31
98	2013,		1
97	A printed antenna with a ground plane and electromagnetically coupled feed for 2.45GHz body area networks 2013 ,		7
96	Making a telemetry system implantable: Challenges and opportunities in antenna design 2013,		1
95	A CONSTANT GAIN ULTRA-WIDEBAND ANTENNA WITH A MULTI-LAYER FREQUENCY SELECTIVE SURFACE. <i>Progress in Electromagnetics Research Letters</i> , 2013 , 38, 119-125	0.5	25
94	A Simple Dual-Band Electromagnetic Band Gap Resonator Antenna Based on Inverted Reflection Phase Gradient. <i>IEEE Transactions on Antennas and Propagation</i> , 2012 , 60, 4522-4529	4.9	48
93	A miniaturized implantable PIFA antenna for indoor wireless telemetry 2012,		3
92	Design of an implantable antenna to acquire physiological signals in rats 2012,		5
91	Bandwidth enhancement of an implantable RFID tag antenna at 900 MHz ISM band for RF telemetry 2012 ,		4
90	. IEEE Transactions on Antennas and Propagation, 2012 , 60, 743-750	4.9	140
90	. IEEE Transactions on Antennas and Propagation, 2012, 60, 743-750 A simple EBG structure for dual-band circularly polarized antennas with high directivity 2012,	4.9	140
		4·9 3.8	
89	A simple EBG structure for dual-band circularly polarized antennas with high directivity 2012 , STUDY OF AN EXTREMELY WIDEBAND MONOPOLE ANTENNA WITH TRIPLE BAND-NOTCHED		4
89 88	A simple EBG structure for dual-band circularly polarized antennas with high directivity 2012 , STUDY OF AN EXTREMELY WIDEBAND MONOPOLE ANTENNA WITH TRIPLE BAND-NOTCHED CHARACTERSISTICS. <i>Progress in Electromagnetics Research</i> , 2012 , 123, 143-158 A Coupled-Field Expansion Method for Single-Layer and Multilayer Planar Periodic Structures.	3.8	4 31
89 88 87	A simple EBG structure for dual-band circularly polarized antennas with high directivity 2012, STUDY OF AN EXTREMELY WIDEBAND MONOPOLE ANTENNA WITH TRIPLE BAND-NOTCHED CHARACTERSISTICS. Progress in Electromagnetics Research, 2012, 123, 143-158 A Coupled-Field Expansion Method for Single-Layer and Multilayer Planar Periodic Structures. International Journal of Antennas and Propagation, 2012, 2012, 1-16	3.8	4 31 135
89 88 87 86	A simple EBG structure for dual-band circularly polarized antennas with high directivity 2012, STUDY OF AN EXTREMELY WIDEBAND MONOPOLE ANTENNA WITH TRIPLE BAND-NOTCHED CHARACTERSISTICS. Progress in Electromagnetics Research, 2012, 123, 143-158 A Coupled-Field Expansion Method for Single-Layer and Multilayer Planar Periodic Structures. International Journal of Antennas and Propagation, 2012, 2012, 1-16 . IEEE Transactions on Antennas and Propagation, 2012, 60, 2635-2644	3.8	4 31 135 3
89 88 87 86	A simple EBG structure for dual-band circularly polarized antennas with high directivity 2012, STUDY OF AN EXTREMELY WIDEBAND MONOPOLE ANTENNA WITH TRIPLE BAND-NOTCHED CHARACTERSISTICS. Progress in Electromagnetics Research, 2012, 123, 143-158 A Coupled-Field Expansion Method for Single-Layer and Multilayer Planar Periodic Structures. International Journal of Antennas and Propagation, 2012, 2012, 1-16 . IEEE Transactions on Antennas and Propagation, 2012, 60, 2635-2644 A single-layer thin partially reflecting surface for tri-band directivity enhancement 2012,	3.8	4 31 135 3

81	Oblique incidence performance of UWB frequency selective surfaces for reflector applications 2011 ,		8	
80	Design and analysis of frequency-selective surfaces for ultrawideband applications 2011 ,		7	
79	Compact Dielectric Resonator Antennas With Ultrawide 60% 110% Bandwidth. <i>IEEE Transactions on Antennas and Propagation</i> , 2011 , 59, 3445-3448	4.9	44	
78	Effects of a Coplanar Waveguide Biasing Network Built Into the Ground Plane on the Dispersion Characteristics of a Tunable Unit Cell With an Elliptical Patch and Multiple Vias. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2011 , 10, 1088-1091	3.8	7	
77	. IEEE Transactions on Antennas and Propagation, 2011 , 59, 520-525	4.9	69	
76	Enhanced gain UWB slot antenna with multilayer Frequency-Selective Surface reflector 2011 ,		3	
75	Experimental demonstration of a dual-band electromagnetic band-gap resonator antenna made out of a simple, single-layer frequency selective surface. <i>Microwave and Optical Technology Letters</i> , 2011 , 53, 1867-1869	1.2	6	
74	Achieving Ratio Bandwidth of 25:1 From a Printed Antenna Using a Tapered Semi-Ring Feed. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2011 , 10, 1333-1336	3.8	22	
73	A Printed Elliptical Monopole Antenna With Modified Feeding Structure for Bandwidth Enhancement. <i>IEEE Transactions on Antennas and Propagation</i> , 2011 , 59, 667-670	4.9	71	
72	Enhancing RF/microwave efficient transmission through energy saving glass windows using Frequency Selective surface 2011 ,		2	
71	Effects of rat skin on the resonance frequency: An experiment with a commercial antenna for an implanted telemetry system 2011 ,		1	
70	A METHOD TO DESIGN DUAL-BAND, HIGH-DIRECTIVITY EBG RESONATOR ANTENNAS USING SINGLE-RESONANT, SINGLE-LAYER PARTIALLY REFLECTIVE SURFACES. <i>Progress in Electromagnetics Research C</i> , 2010 , 13, 245-257	0.9	27	
69	Effects of the variation of the dielectric constant for a periodic, width-modulated microstrip line based sensor 2010 ,		1	
68	Gain enhancement of UWB slot with the use of surface mounted short horn 2010 ,		2	
67	Planar-Monopole-Fed, Surface-Mounted Quasi-TEM Horn Antenna for UWB Systems. <i>IEEE Transactions on Antennas and Propagation</i> , 2010 , 58, 2436-2439	4.9	10	
66	. IEEE Transactions on Antennas and Propagation, 2010 , 58, 1922-1934	4.9	14	
65	Switchable Frequency Selective Surface for Reconfigurable Electromagnetic Architecture of Buildings. <i>IEEE Transactions on Antennas and Propagation</i> , 2010 , 58, 581-584	4.9	71	
64	An asymmetrical structure for printed SWB antenna miniaturization 2010 ,		3	

63	Modulated strip-line leaky-wave antenna using a printed grating lens and a surface-wave source 2010 ,		6
62	Transmission of infrared and visible wavelengths through energy-saving glass due to etching of frequency-selective surfaces. <i>IET Microwaves, Antennas and Propagation</i> , 2010 , 4, 955	1.6	24
61	A printed antenna with constant gain over a wide bandwidth for ultra-wideband applications. <i>Microwave and Optical Technology Letters</i> , 2010 , 52, 1261-1264	1.2	4
60	Compact ultra-wideband CPW-FED printed semicircular slot antenna. <i>Microwave and Optical Technology Letters</i> , 2010 , 52, 2367-2372	1.2	4
59	TUNABLE PERIODIC MICROSTRIP STRUCTURE ON GAAS WAFER. <i>Progress in Electromagnetics Research</i> , 2009 , 97, 1-10	3.8	16
58	A dielectric resonator antenna for UWB applications. <i>Digest / IEEE Antennas and Propagation Society International Symposium</i> , 2009 ,		7
57	A printed monopole antenna with extremely wide bandwidth 2009,		3
56	Low-profile resonant cavity antenna based on an in-phase metamaterial surface. <i>Microwave and Optical Technology Letters</i> , 2009 , 51, 731-733	1.2	7
55	Design, fabrication, simulation, and measurement of a dual-band, planar, compact artificial magnetic conductor. <i>Microwave and Optical Technology Letters</i> , 2009 , 51, 1524-1527	1.2	1
54	Analysis of spiral metamaterials by use of group theory. <i>Metamaterials</i> , 2009 , 3, 33-43		24
53	Dielectric Loaded Impedance Matching for Wideband Implanted Antennas. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2009 , 57, 2480-2487	4.1	76
52	A UWB Probe-Fed Dielectric Resonator Antenna 2009 ,		3
51	Consideration of bandwidth of the small EBG-resonator antenna using the in-phase highly-reflecting surfaces. <i>Digest / IEEE Antennas and Propagation Society International Symposium</i> , 2009 ,		5
50	Wideband High-Gain Circularly Polarized Stacked Microstrip Antennas With an Optimized C-Type Feed and a Short Horn. <i>IEEE Transactions on Antennas and Propagation</i> , 2008 , 56, 578-581	4.9	27
49	UWB Performance of Compact L-shaped Wide Slot Antennas. <i>IEEE Transactions on Antennas and Propagation</i> , 2008 , 56, 1183-1187	4.9	28
48	jawidening the bandwidth of single-fed circularly polarized microstrip patch antenna using sequential array 2008,		3
47	. IEEE Transactions on Antennas and Propagation, 2008, 56, 3173-3178	4.9	19
46	Transmission analysis of energy saving glass windows for the purpose of providing FSS solutions at microwave frequencies 2008 ,		5

(2007-2008)

45	Single-layer bandpass active frequency selective surface. <i>Microwave and Optical Technology Letters</i> , 2008 , 50, 2149-2151	1.2	30
44	Angle and polarization-independent bandstop frequency selective surface for indoor wireless systems. <i>Microwave and Optical Technology Letters</i> , 2008 , 50, 2315-2317	1.2	20
43	A resonant cavity antenna based on an optimized thin superstrate. <i>Microwave and Optical Technology Letters</i> , 2008 , 50, 3057-3059	1.2	9
42	Active frequency selective surface using PIN diodes 2007,		16
41	Compact microstrip and CPW duplexers using complementary and conventional logarithmic spiral resonators 2007 ,		1
40	Optimising the coaxial-fed location to enhance circular polarization bandwidth of stacked microstrip antennas. <i>Microwave and Optical Technology Letters</i> , 2007 , 49, 132-135	1.2	2
39	Gain enhancement of a dielectric resonator antenna with use of surface mounted short horn. <i>Microwave and Optical Technology Letters</i> , 2007 , 49, 1162-1166	1.2	3
38	Design of Low-Profile High-Gain EBG Resonator Antennas Using a Genetic Algorithm. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2007 , 6, 480-483	3.8	43
37	Glass Characterization for Designing Frequency Selective Surfaces to Improve Transmission through Energy Saving Glass Windows 2007 ,		21
36	. IEEE Transactions on Antennas and Propagation, 2007 , 55, 3320-3325	4.9	105
36 35	. IEEE Transactions on Antennas and Propagation, 2007, 55, 3320-3325 GABDTD technique for the design and optimisation of periodic metamaterials. IET Microwaves, Antennas and Propagation, 2007, 1, 158	1.6	105
	GABOTD technique for the design and optimisation of periodic metamaterials. <i>IET Microwaves</i> ,	. ,	
35	GABDTD technique for the design and optimisation of periodic metamaterials. <i>IET Microwaves, Antennas and Propagation</i> , 2007 , 1, 158 Dual resonator 1-D EBG antenna with slot array feed for improved radiation bandwidth. <i>IET</i>	1.6	18
35	GABDTD technique for the design and optimisation of periodic metamaterials. <i>IET Microwaves, Antennas and Propagation</i> , 2007 , 1, 158 Dual resonator 1-D EBG antenna with slot array feed for improved radiation bandwidth. <i>IET Microwaves, Antennas and Propagation</i> , 2007 , 1, 198 Antennas with dielectric resonators and surface mounted short horns for high gain and large	1.6	18 68
35 34 33	GABDTD technique for the design and optimisation of periodic metamaterials. <i>IET Microwaves, Antennas and Propagation,</i> 2007 , 1, 158 Dual resonator 1-D EBG antenna with slot array feed for improved radiation bandwidth. <i>IET Microwaves, Antennas and Propagation,</i> 2007 , 1, 198 Antennas with dielectric resonators and surface mounted short horns for high gain and large bandwidth. <i>IET Microwaves, Antennas and Propagation,</i> 2007 , 1, 723 Wideband Circularly Polarized Stacked Microstrip Antennas. <i>IEEE Antennas and Wireless</i>	1.6 1.6	18 68 39
35 34 33 32	GABDTD technique for the design and optimisation of periodic metamaterials. <i>IET Microwaves, Antennas and Propagation,</i> 2007 , 1, 158 Dual resonator 1-D EBG antenna with slot array feed for improved radiation bandwidth. <i>IET Microwaves, Antennas and Propagation,</i> 2007 , 1, 198 Antennas with dielectric resonators and surface mounted short horns for high gain and large bandwidth. <i>IET Microwaves, Antennas and Propagation,</i> 2007 , 1, 723 Wideband Circularly Polarized Stacked Microstrip Antennas. <i>IEEE Antennas and Wireless Propagation Letters,</i> 2007 , 6, 21-24	1.6 1.6	18 68 39
35 34 33 32 31	GABDTD technique for the design and optimisation of periodic metamaterials. <i>IET Microwaves, Antennas and Propagation</i> , 2007, 1, 158 Dual resonator 1-D EBG antenna with slot array feed for improved radiation bandwidth. <i>IET Microwaves, Antennas and Propagation</i> , 2007, 1, 198 Antennas with dielectric resonators and surface mounted short horns for high gain and large bandwidth. <i>IET Microwaves, Antennas and Propagation</i> , 2007, 1, 723 Wideband Circularly Polarized Stacked Microstrip Antennas. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2007, 6, 21-24 Comparison of UWB Antennas Considering Pattern Variation With Frequency 2007, 57-62 Oblique Incidence Performance of a Novel Frequency Selective Surface Absorber. <i>IEEE Transactions</i>	1.6 1.6 1.6 3.8	18 68 39 77

27	A wideband probe-fed stacked dielectric resonator antenna. <i>Microwave and Optical Technology Letters</i> , 2006 , 48, 1630-1633	1.2	17
26	High gain circularly polarised 1-D EBG resonator antenna. <i>Electronics Letters</i> , 2006 , 42, 1012	1.1	38
25	A novel absorb/transmit FSS for secure indoor wireless networks with reduced multipath fading. <i>IEEE Microwave and Wireless Components Letters</i> , 2006 , 16, 378-380	2.6	85
24	Study of various Slots in Circular Patch for Circularly Polarized Antennas and Enhancing their Gain by Short Horns 2006 ,		1
23	Antennas for 5B GHz Wireless Communication Systems 2005, 269-280		
22	A printed triangular-ring antenna with a 2:1 bandwidth. <i>Microwave and Optical Technology Letters</i> , 2005 , 44, 51-53	1.2	6
21	High-gain 1D EBG resonator antenna. Microwave and Optical Technology Letters, 2005, 47, 107-114	1.2	74
20	Resonance frequency of an equilateral triangular microstrip antenna. <i>Microwave and Optical Technology Letters</i> , 2005 , 47, 485-489	1.2	17
19	Compact diversity antenna for wireless devices. <i>Electronics Letters</i> , 2005 , 41, 52	1.1	24
18	Layer-by-layer photonic crystal horn antenna. <i>Physical Review E</i> , 2004 , 70, 037602	2.4	14
17	Performance of PML absorbing boundary conditions in 3D photonic crystal waveguides. <i>Microwave and Optical Technology Letters</i> , 2004 , 40, 1-3	1.2	8
16	A broadband E-shaped patch antenna with a microstrip-compatible feed. <i>Microwave and Optical Technology Letters</i> , 2004 , 42, 111-112	1.2	10
15	Circularly polarized 1-D EBG resonator antenna 2004 ,		1
14	A closed-form analysis of printed wide-slot antennas. <i>International Journal of RF and Microwave Computer-Aided Engineering</i> , 2003 , 13, 389-397	1.5	
13	Efficient analysis of arbitrarily shaped microstrip structures. <i>Microwave and Optical Technology Letters</i> , 2003 , 37, 246-248	1.2	0
12	Photonic crystal horn and array antennas. <i>Physical Review E</i> , 2003 , 68, 016609	2.4	26
11	New closed-form Green ß functions for microstrip structures - theory and results. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2002 , 50, 1556-1560	4.1	24
10	A new, closed-form, spatial-domain Greenß function for layered structures and its application to the method of moments. <i>Microwave and Optical Technology Letters</i> , 2002 , 32, 229-231	1.2	5

LIST OF PUBLICATIONS

9	A fast and general complex image method for evaluating the Sommerfeld integrals. <i>Microwave and Optical Technology Letters</i> , 2001 , 30, 24-26	1.2	2
8	Computation of the radiation patterns of a rectangular dielectric-resonator antenna using the method of moments. <i>Microwave and Optical Technology Letters</i> , 2000 , 27, 382-384	1.2	
7	Analysis of microstrip lines with diagonal edges using a singularity-enhanced FDTD technique. <i>Microwave and Optical Technology Letters</i> , 1999 , 23, 121-123	1.2	2
6	Circularly polarised higher-order rectangular dielectric-resonator antenna. <i>Electronics Letters</i> , 1996 , 32, 150	1.1	43
5	Cylindrical Model for Neural Stimulation with Magnetic Fields 1996 , 151-159		
4	Factors affecting neural stimulation with magnetic fields. <i>Bioelectromagnetics</i> , 1992 , Suppl 1, 191-204	1.6	11
3	Small Multiband Printed Monopole Antennas257-279		
2	Compact circularly polarized enhanced gain microstrip antenna on high permittivity substrate		4

1 EBG Materials and Antennas413-450