
Cecilia Granados-Miralles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4157539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of organic solvent on the cold sintering processing of SrFe12O19 platelet-based permanent magnets. Journal of the European Ceramic Society, 2022, 42, 1014-1022.	5.7	7
2	Dense strontium hexaferrite-based permanent magnet composites assisted by cold sintering process. Journal of Alloys and Compounds, 2022, 917, 165531.	5.5	14
3	Improvement of the magnetic properties of SrFe12O19 ceramics by tailored sintering with SiO2 addition. Journal of Alloys and Compounds, 2021, 860, 157890.	5.5	15
4	On the potential of hard ferrite ceramics for permanent magnet technology—a review on sintering strategies. Journal Physics D: Applied Physics, 2021, 54, 303001.	2.8	35
5	Hexaferrite-based permanent magnets with upper magnetic properties by cold sintering process via a non-aqueous solvent. Acta Materialia, 2021, 219, 117262.	7.9	22
6	Greener processing of SrFe12O19 ceramic permanent magnets by two-step sintering. Ceramics International, 2021, 47, 31765-31771.	4.8	10
7	Boosting the coercivity of SrFe ₁₂ O ₁₉ nanocrystalline powders obtained using the citrate combustion synthesis method. Journal Physics D: Applied Physics, 2021, 54, 014002.	2.8	7
8	Uncorrelated magnetic domains in decoupled SrFe ₁₂ O ₁₉ /Co hard/soft bilayers. Journal Physics D: Applied Physics, 2021, 54, 054003.	2.8	3
9	Pt-free CoAl2O4 catalyst for soot combustion with NOx/O2. Applied Catalysis A: General, 2020, 591, 117404.	4.3	13
10	Ultrafast Particle Size Reduction of Fe73.9Si15.5Cu1Nb3B6.6 by High-Energy Milling: Nb2O5 as a Marker of Permeability Enhancement and Magnetic Hardening. ACS Applied Electronic Materials, 2020, 2, 1484-1496.	4.3	6
11	FeCo Nanowire–Strontium Ferrite Powder Composites for Permanent Magnets with High-Energy Products. ACS Applied Nano Materials, 2020, 3, 9842-9851.	5.0	14
12	Expanding the tunability and applicability of exchange-coupled/decoupled magnetic nanocomposites. Materials Chemistry Frontiers, 2020, 4, 1222-1230.	5.9	11
13	Influence of the growth conditions on the magnetism of SrFe ₁₂ O ₁₉ thin films and the behavior of Co/SrFe ₁₂ O ₁₉ bilayers. Journal Physics D: Applied Physics, 2020, 53, 344002.	2.8	6
14	Elucidating the relationship between nanoparticle morphology, nuclear/magnetic texture and magnetic performance of sintered SrFe ₁₂ O ₁₉ magnets. Nanoscale, 2020, 12, 9481-9494.	5.6	20
15	Exploring the direct synthesis of exchange-spring nanocomposites by reduction of CoFe2O4 spinel nanoparticles using in situ neutron diffraction. Nanoscale, 2020, 12, 9440-9451.	5.6	6
16	Tuning the Néel temperature in an antiferromagnet: the case of NixCo1â^'xO microstructures. Scientific Reports, 2019, 9, 13584.	3.3	15
17	Enhanced intrinsic saturation magnetization of Zn _x Co _{1â^'x} Fe ₂ O ₄ nanocrystallites with metastable spinel inversion. Materials Chemistry Frontiers, 2019, 3, 668-679.	5.9	29
18	Nanoengineered High-Performance Hexaferrite Magnets by Morphology-Induced Alignment of Tailored Nanoplatelets. ACS Applied Nano Materials, 2018, 1, 6938-6949.	5.0	36

CECILIA GRANADOS-MIRALLES

#	Article	IF	CITATIONS
19	Exchange-spring behavior below the exchange length in hard-soft bilayers in multidomain configurations. Physical Review B, 2018, 98, .	3.2	13
20	Approaching Ferrite-Based Exchange-Coupled Nanocomposites as Permanent Magnets. ACS Applied Nano Materials, 2018, 1, 3693-3704.	5.0	25
21	Crystalline and magnetic structure–property relationship in spinel ferrite nanoparticles. Nanoscale, 2018, 10, 14902-14914.	5.6	106
22	Enhancement of magnetic properties by spark plasma sintering of hydrothermally synthesised SrFe ₁₂ O ₁₉ . CrystEngComm, 2017, 19, 1400-1407.	2.6	21
23	Magnetism in CoFe ₂ O ₄ nanoparticles produced at sub- and near-supercritical conditions of water. CrystEngComm, 2017, 19, 3986-3996.	2.6	14
24	Energy Product Enhancement in Imperfectly Exchange oupled Nanocomposite Magnets. Advanced Electronic Materials, 2016, 2, 1500365.	5.1	47
25	Ferriteâ€Based Exchange oupled Hard–Soft Magnets Fabricated by Spark Plasma Sintering. Journal of the American Ceramic Society, 2016, 99, 1927-1934.	3.8	41
26	Co on Fe3O4(001): Towards precise control of surface properties. Journal of Chemical Physics, 2016, 144, 094704.	3.0	28
27	Unraveling structural and magnetic information during growth of nanocrystalline SrFe ₁₂ O ₁₉ . Journal of Materials Chemistry C, 2016, 4, 10903-10913.	5.5	30
28	Tuning the size and magnetic properties of Zn _x Co _{1â^'x} Fe ₂ O ₄ nanocrystallites. Dalton Transactions, 2016, 45, 6439-6448.	3.3	17
29	Improved performance of SrFe ₁₂ O ₁₉ bulk magnets through bottom-up nanostructuring. Nanoscale, 2016, 8, 2857-2866.	5.6	44