
Viviana Pinto Ribeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4157393/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioinspired Silk Fibroin-Based Composite Grafts as Bone Tunnel Fillers for Anterior Cruciate Ligament Reconstruction. Pharmaceutics, 2022, 14, 697.	2.0	9
2	Horseradish Peroxidaseâ€Crosslinked Calciumâ€Containing Silk Fibroin Hydrogels as Artificial Matrices for Bone Cancer Research. Macromolecular Bioscience, 2021, 21, e2000425.	2.1	9
3	Advances on gradient scaffolds for osteochondral tissue engineering. Progress in Biomedical Engineering, 2021, 3, 033001.	2.8	8
4	Carbon nanotube-reinforced cell-derived matrix-silk fibroin hierarchical scaffolds for bone tissue engineering applications. Journal of Materials Chemistry B, 2021, 9, 9561-9574.	2.9	13
5	Comparison between calcium carbonate and βâ€ŧricalcium phosphate as additives of 3D printed scaffolds with polylactic acid matrix. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 272-283.	1.3	29
6	Hierarchical HRP-Crosslinked Silk Fibroin/ZnSr-TCP Scaffolds for Osteochondral Tissue Regeneration: Assessment of the Mechanical and Antibacterial Properties. Frontiers in Materials, 2020, 7, .	1.2	12
7	Tissue engineering scaffolds. , 2019, , 165-185.		6
8	Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials, 2019, 12, 1824.	1.3	309
9	Thermal annealed silk fibroin membranes for periodontal guided tissue regeneration. Journal of Materials Science: Materials in Medicine, 2019, 30, 27.	1.7	16
10	Enzymatically Cross-Linked Silk Fibroin-Based Hierarchical Scaffolds for Osteochondral Regeneration. ACS Applied Materials & Interfaces, 2019, 11, 3781-3799.	4.0	83
11	Engineering patient-specific bioprinted constructs for treatment of degenerated intervertebral disc. Materials Today Communications, 2019, 19, 506-512.	0.9	36
12	Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Acta Biomaterialia, 2018, 72, 167-181.	4.1	93
13	Silk Fibroin-Based Hydrogels and Scaffolds for Osteochondral Repair and Regeneration. Advances in Experimental Medicine and Biology, 2018, 1058, 305-325.	0.8	27
14	Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds. Bio-Design and Manufacturing, 2018, 1, 69-75.	3.9	22
15	Rapidly responsive silk fibroin hydrogels as an artificial matrix for the programmed tumor cells death. PLoS ONE, 2018, 13, e0194441.	1.1	65
16	Silk-based anisotropical 3D biotextiles for bone regeneration. Biomaterials, 2017, 123, 92-106.	5.7	48
17	Fundamentals on Osteochondral Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 129-146.	0.7	2
18	Pre-clinical and Clinical Management of Osteochondral Lesions. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 147-161.	0.7	5

#	Article	IF	CITATIONS
19	Modulating cell adhesion to polybutylene succinate biotextile constructs for tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2853-2863.	1.3	13
20	Influence of different surface modification treatments on silk biotextiles for tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 496-507.	1.6	19
21	Continuous-flow precipitation as a route to prepare highly controlled nanohydroxyapatite: <i>in vitro</i> mineralization and biological evaluation. Materials Research Express, 2016, 3, 075404.	0.8	9
22	Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels. Scientific Reports, 2016, 6, 31037.	1.6	62
23	Bisphosphonates induce the osteogenic gene expression in coâ€cultured human endothelial and mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 2014, 18, 27-37.	1.6	24
24	In Vivo Performance of Hierarchical HRP-Crosslinked Silk Fibroin/β-TCP Scaffolds for Osteochondral Tissue Regeneration. Regenerative Medicine Frontiers, 0, , .	0.0	5
25	Finely tuned fiber-based porous structures for bone tissue engineering applications. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	Ο