Denese C Marks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4155326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A pilot randomized clinical trial of cryopreserved versus liquidâ€stored platelet transfusion for bleeding in cardiac surgery: The cryopreserved versus liquid platelet <scp>â€</scp> New Zealand pilot trial. Vox Sanguinis, 2022, 117, 337-345.	0.7	13
2	Evaluation of platelet concentrates prepared from whole blood donations with collection times between 12 and 15 min: The BEST Collaborative study. Vox Sanguinis, 2022, , .	0.7	0
3	Changes in glycans on platelet microparticles released during storage of apheresis platelets are associated with phosphatidylserine externalization and phagocytosis. Transfusion, 2022, 62, 1289-1301.	0.8	2
4	Cold storage alters the immune characteristics of platelets and potentiates bacterialâ€induced aggregation. Vox Sanguinis, 2022, , .	0.7	0
5	Gamma and Xâ€ray irradiation do not affect the in vitro quality of refrigerated apheresis platelets in platelet additive solution (<scp>PASâ€E</scp>). Transfusion, 2022, 62, .	0.8	2
6	The immune potential of <i>ex vivo</i> stored platelets: a review. Vox Sanguinis, 2021, 116, 477-488.	0.7	2
7	Effect of Recombinant Human Perlecan Domain V Tethering Method on Protein Orientation and Blood Contacting Activity on Polyvinyl Chloride. Advanced Healthcare Materials, 2021, 10, 2100388.	3.9	3
8	Reconstituted cryopreserved platelets synthesize proteins during shortâ€ŧerm storage and packaging a defined subset into microvesicles. Transfusion, 2021, 61, 2549-2555.	0.8	1
9	Refrigeration of apheresis platelets in platelet additive solution (<scp>PASâ€E</scp>) supports in vitro platelet quality to maximize the shelfâ€life. Transfusion, 2021, 61, S58-S67.	0.8	14
10	Willingness of blood donors in Australia to provide additional data and blood sample for health research. Transfusion, 2021, 61, 2855-2861.	0.8	6
11	X―and gammaâ€irradiation have similar effects on the in vitro quality of stored red cell components. Transfusion, 2021, 61, 3214-3223.	0.8	8
12	A platelet-derived hydrogel improves neovascularisation in full thickness wounds. Acta Biomaterialia, 2021, 136, 199-209.	4.1	14
13	Xâ€irradiation and gammaâ€irradiation inactivate lymphocytes in blood components. Transfusion, 2021, 61, 3081-3086.	0.8	1
14	The in vitro quality of Xâ€irradiated platelet components in <scp>PASâ€E</scp> is equivalent to gammaâ€irradiated components. Transfusion, 2021, 61, 3075-3080.	0.8	7
15	Cryopreservation alters the immune characteristics of platelets. Transfusion, 2021, 61, 3432-3442.	0.8	4
16	Platelet procoagulant potential is reduced in platelet concentrates ex vivo but appears restored following transfusion. Transfusion, 2021, 61, 3420-3431.	0.8	5
17	Donor citrate reactions influence the phenotype of apheresis platelets following storage. Transfusion, 2021, , .	0.8	1
18	Serum growth factor stability in different eye drop packaging systems during storage. Transfusion and Apheresis Science, 2020, 59, 102608.	0.5	6

#	Article	IF	CITATIONS
19	The Lipid Composition of Platelets and the Impact of Storage: An Overview. Transfusion Medicine Reviews, 2020, 34, 108-116.	0.9	15
20	Freezing expired platelets does not compromise in vitro quality: An opportunity to maximize inventory potential. Transfusion, 2020, 60, 454-459.	0.8	9
21	Characterizing the ability of an ice recrystallization inhibitor to improve platelet cryopreservation. Cryobiology, 2020, 96, 152-158.	0.3	10
22	Extended storage of thawed platelets: Refrigeration supports postthaw quality for 10 days. Transfusion, 2020, 60, 2969-2981.	0.8	11
23	Inactivation of <scp>Japanese</scp> encephalitis virus in plasma by methylene blue combined with visible light and in platelet concentrates by ultraviolet <scp>C</scp> light. Transfusion, 2020, 60, 2655-2660.	0.8	6
24	The role of neuraminidase 1 and 2 in glycoprotein Ibα-mediated integrin αIIbβ3 activation. Haematologica, 2020, 105, 1081-1094.	1.7	17
25	Calcium chelation: a novel approach to reduce cryopreservationâ€induced damage to frozen platelets. Transfusion, 2020, 60, 1552-1563.	0.8	12
26	A randomized, controlled pilot clinical trial of cryopreserved platelets for perioperative surgical bleeding: the CLIPâ€I trial <i>(Editorial, p. 2759)</i> . Transfusion, 2019, 59, 2794-2804.	0.8	40
27	Not all red cell concentrate units are equivalent: international survey of processing and in vitro quality data. Vox Sanguinis, 2019, 114, 783-794.	0.7	14
28	Inactivation of yellow fever virus in plasma after treatment with methylene blue and visible light and in platelet concentrates following treatment with ultraviolet C light. Transfusion, 2019, 59, 2223-2227.	0.8	14
29	Cryopreservation of UVC pathogenâ€inactivated platelets. Transfusion, 2019, 59, 2093-2102.	0.8	15
30	The impact of refrigerated storage of <scp>UVC</scp> pathogen inactivated platelet concentrates on <i>inÂvitro</i> platelet quality parameters. Vox Sanguinis, 2019, 114, 47-56.	0.7	18
31	Assays for phenotypic and functional characterization of cryopreserved platelets. Platelets, 2019, 30, 48-55.	1.1	14
32	Refrigeration, cryopreservation and pathogen inactivation: an updated perspective on platelet storage conditions. Vox Sanguinis, 2018, 113, 317-328.	0.7	32
33	Maximising platelet availability by delaying cold storage. Vox Sanguinis, 2018, 113, 403-411.	0.7	34
34	A clinical trial of frozen platelets: rationale, protocol and pilot analysis plan. ISBT Science Series, 2018, 13, 331-337.	1.1	6
35	Characterization of biologic response modifiers in the supernatant of conventional, refrigerated, and cryopreserved platelets. Transfusion, 2018, 58, 927-937.	0.8	35
36	Timing of gamma irradiation and blood donor sex influences in vitro characteristics of red blood cells. Transfusion, 2018, 58, 917-926.	0.8	20

#	Article	IF	CITATIONS
37	International Forum on <scp>GMP</scp> â€grade human platelet lysate for cell propagation: summary. Vox Sanguinis, 2018, 113, 80-87.	0.7	45
38	International Forum on GMPâ€grade human platelet lysate for cell propagation. Vox Sanguinis, 2018, 113, e1-e25.	0.7	11
39	Comparison between manufacturing sites shows differential adhesion, activation, and GPIbα expression of cryopreserved platelets. Transfusion, 2018, 58, 2645-2656.	0.8	29
40	Cryopreserved platelets: are we there yet?. Transfusion, 2018, 58, 2092-2094.	0.8	6
41	Ultraviolet-Based Pathogen Inactivation Systems: Untangling the Molecular Targets Activated in Platelets. Frontiers in Medicine, 2018, 5, 129.	1.2	33
42	Postdonation iron replacement for maintaining iron stores in female whole blood donors in routine donor practice: results of two feasibility studies in Australia. Transfusion, 2017, 57, 1922-1929.	0.8	16
43	Serum eye drops: a survey of international production methods. Vox Sanguinis, 2017, 112, 310-317.	0.7	27
44	Vox Sanguinis International Forum on platelet cryopreservation. Vox Sanguinis, 2017, 112, e69-e85.	0.7	20
45	Cryopreserved platelets demonstrate reduced activation responses and impaired signaling after agonist stimulation. Transfusion, 2017, 57, 2845-2857.	0.8	26
46	Immunomodulatory effect of cryopreserved platelets: altered BDCA3 ⁺ dendritic cell maturation and activation in vitro. Transfusion, 2017, 57, 2878-2887.	0.8	8
47	Vox Sanguinis International Forum on platelet cryopreservation: Summary. Vox Sanguinis, 2017, 112, 684-688.	0.7	17
48	Reduction of Zika virus infectivity in platelet concentrates after treatment with ultraviolet C light and in plasma after treatment with methylene blue and visible light. Transfusion, 2017, 57, 2677-2682.	0.8	35
49	Quality and Safety of Blood Products. Journal of Blood Transfusion, 2016, 2016, 1-2.	3.3	11
50	Quality Assessment of Established and Emerging Blood Components for Transfusion. Journal of Blood Transfusion, 2016, 2016, 1-28.	3.3	57
51	Mitigating the Risk of Transfusion-Transmitted Dengue in Australia. Journal of Blood Transfusion, 2016, 2016, 1-6.	3.3	9
52	Riboflavin and ultraviolet light: impact on dengue virus infectivity. Vox Sanguinis, 2016, 111, 235-241.	0.7	29
53	The impact on blood donor screening for human immunodeficiency virus, hepatitis C virus, and hepatitis B virus using plasma from frozenâ€ŧhawed plasma preparation tubes. Transfusion, 2016, 56, 449-456.	0.8	7
54	Inactivation of dengue, chikungunya, and Ross River viruses in platelet concentrates after treatment with ultraviolet C light. Transfusion, 2016, 56, 1548-1555.	0.8	40

#	Article	IF	CITATIONS
55	Refrigeration and cryopreservation of platelets differentially affect platelet metabolism and function: a comparison with conventional platelet storage conditions. Transfusion, 2016, 56, 1807-1818.	0.8	113
56	In vitro Quality of Platelets with Low Plasma Carryover Treated with Ultraviolet C Light for Pathogen Inactivation. Transfusion Medicine and Hemotherapy, 2016, 43, 190-197.	0.7	25
57	Perspectives on the use of biomaterials to store platelets for transfusion. Biointerphases, 2016, 11, 029701.	0.6	5
58	Refrigerated storage of platelets initiates changes in platelet surface marker expression and localization of intracellular proteins. Transfusion, 2016, 56, 2548-2559.	0.8	46
59	Dengue and chikungunya viruses in plasma are effectively inactivated after treatment with methylene blue and visible light. Transfusion, 2016, 56, 2278-2285.	0.8	25
60	Reduction of biological response modifiers in the supernatant of washed paediatric red blood cells. Vox Sanguinis, 2016, 111, 365-373.	0.7	11
61	Extended storage and glucose exhaustion are associated with apoptotic changes in platelets stored in additive solution. Transfusion, 2016, 56, 360-368.	0.8	26
62	Quality standards, safety and efficacy of blood-derived serum eye drops: A review. Transfusion and Apheresis Science, 2016, 54, 164-167.	0.5	34
63	The effect of riboflavin and ultraviolet light on the infectivity of arboviruses. Transfusion, 2015, 55, 824-831.	0.8	21
64	Propensity of red blood cells to undergo P2X7 receptor–mediated phosphatidylserine exposure does not alter during in vivo or ex vivo aging. Transfusion, 2015, 55, 1946-1954.	0.8	14
65	Cryopreservation alters the membrane and cytoskeletal protein profile of platelet microparticles. Transfusion, 2015, 55, 2422-2432.	0.8	52
66	Gammaâ€irradiation of deglycerolized red cells does not significantly affect <i>inÂvitro</i> quality. Vox Sanguinis, 2015, 109, 231-238.	0.7	3
67	Treatment of platelets with riboflavin and ultraviolet light mediates complement activation and suppresses monocyte interleukinâ€12 production in whole blood. Vox Sanguinis, 2015, 109, 327-335.	0.7	7
68	Serum eye drop preparation in Australia: Current manufacturing practice. Transfusion and Apheresis Science, 2015, 53, 92-94.	0.5	15
69	Platelet microparticles in cryopreserved platelets: Potential mediators of haemostasis. Transfusion and Apheresis Science, 2015, 53, 146-152.	0.5	25
70	A patient focused application of a non-conventional blood components- autologous serum eye drops – and current opinions on substances used for clinical management of acute haemorrhage for shock/trauma. Transfusion and Apheresis Science, 2015, 53, 403.	0.5	0
71	Treatment of Platelet Concentrates with the Mirasol Pathogen Inactivation System Modulates Platelet Oxidative Stress and NF-κB Activation. Transfusion Medicine and Hemotherapy, 2015, 42, 167-173.	0.7	26
72	Understanding the effects of gammaâ€irradiation on potassium levels in red cell concentrates stored in <scp>SAG</scp> â€ <scp>M</scp> for neonatal red cell transfusion. Vox Sanguinis, 2015, 108, 141-150.	0.7	25

#	Article	IF	CITATIONS
73	Preparation of red blood cell concentrates and plasma units from whole blood held overnight using a hollowâ€fibre separation system. Transfusion Medicine, 2015, 25, 13-19.	0.5	9
74	In vitro comparison of cryopreserved and liquid platelets: potential clinical implications. Transfusion, 2015, 55, 838-847.	0.8	64
75	An 8â€week course of 45 mg of carbonyl iron daily reduces iron deficiency in female whole blood donors aged 18 to 45 years: results of a prospective randomized controlled trial. Transfusion, 2014, 54, 780-788.	0.8	24
76	The hemostatic activity of cryopreserved platelets is mediated by phosphatidylserineâ€expressing platelets and platelet microparticles. Transfusion, 2014, 54, 1917-1926.	0.8	95
77	Pathogen reduction treatment alters the immunomodulatory capacity of buffy coat–derived platelet concentrates. Transfusion, 2014, 54, 577-584.	0.8	7
78	Red blood cell in vitro quality and function is maintained after <scp>S</scp> â€303 pathogen inactivation treatment. Transfusion, 2014, 54, 1798-1807.	0.8	23
79	Pathogen reduction technologies. ISBT Science Series, 2014, 9, 44-50.	1.1	14
80	Iron deficiency in blood donors: a national crossâ€sectional study. Transfusion, 2014, 54, 2434-2444.	0.8	55
81	Evaluation of the quality of blood components prepared using the Reveos automated blood processing system. Vox Sanguinis, 2013, 105, 225-235.	0.7	23
82	<scp>PAS</scp> â€ <scp>G</scp> supports platelet reconstitution after cryopreservation in the absence of plasma. Transfusion, 2013, 53, 2268-2277.	0.8	26
83	<i>In vitro</i> assessment of buffyâ€coat derived platelet components suspended in <scp>SSP</scp> + treated with the <scp>INTERCEPT</scp> Blood system. Transfusion Medicine, 2013, 23, 121-129.	0.5	46
84	Frozen Blood Products: Clinically Effective and Potentially Ideal for Remote Australia. Anaesthesia and Intensive Care, 2013, 41, 10-19.	0.2	40
85	Frozen platelets for rural Australia: the CLIP trial. Anaesthesia and Intensive Care, 2013, 41, 804-5.	0.2	11
86	Evaluation of the automated collection and extended storage of apheresis platelets in additive solution. Transfusion, 2012, 52, 503-509.	0.8	26
87	Pathogen reduction treatment of buffy coat platelet concentrates in additive solution induces proapoptotic signaling. Transfusion, 2012, 52, 2094-2103.	0.8	30
88	A prospective trial assessing the safety and efficacy of collecting up to 840 $\hat{a}\in f$ mL of plasma in conjunction with saline infusion during plasmapheresis. Transfusion, 2012, 52, 1806-1813.	0.8	15
89	Modulation of P-glycoprotein-Mediated Anticancer Drug Accumulation, Cytotoxicity, and ATPase Activity by Flavonoid Interactions. Nutrition and Cancer, 2011, 63, 435-443.	0.9	30
90	Cryopreservation of buffy-coat-derived platelet concentrates in dimethyl sulfoxide and platelet additive solution. Cryobiology, 2011, 62, 100-106.	0.3	61

#	Article	IF	CITATIONS
91	The effect of pathogen reduction technology (Mirasol) on platelet quality when treated in additive solution with low plasma carryover. Vox Sanguinis, 2011, 101, 208-214.	0.7	45
92	The challenges of managing donor haemoglobin. ISBT Science Series, 2011, 6, 408-415.	1.1	2
93	Pathogen inactivation of platelet concentrates. Vox Sanguinis, 2010, 99, 85-95.	0.7	23
94	A novel 110 kDa form of myosin XVIIIA (MysPDZ) is tyrosine-phosphorylated after colony-stimulating factor-1 receptor signalling. Biochemical Journal, 2004, 380, 243-253.	1.7	16
95	Colony-stimulating factor-1 (CSF-1) receptor-mediated macrophage differentiation in myeloid cells: a role for tyrosine 559-dependent protein phosphatase 2A (PP2A) activity. Biochemical Journal, 2001, 358, 431-436.	1.7	18
96	Colony-stimulating factor-1 (CSF-1) receptor-mediated macrophage differentiation in myeloid cells: a role for tyrosine 559-dependent protein phosphatase 2A (PP2A) activity. Biochemical Journal, 2001, 358, 431.	1.7	13
97	Proteomic Analysis of Macrophage Differentiation. Journal of Biological Chemistry, 2001, 276, 26211-26217.	1.6	27
98	Regulation of urokinase plasminogen activator gene transcription in the RAW264 murine macrophage cell line by macrophage colony-stimulating factor (CSF-1) is dependent upon the level of cell-surface receptor. Biochemical Journal, 2000, 347, 313.	1.7	3
99	Regulation of urokinase plasminogen activator gene transcription in the RAW264 murine macrophage cell line by macrophage colony-stimulating factor (CSF-1) is dependent upon the level of cell-surface receptor. Biochemical Journal, 2000, 347, 313-320.	1.7	18
100	Differential Ability of SOCS Proteins to Regulate IL-6 and CSF-1 Induced Macrophage Differentiation. Growth Factors, 1999, 16, 305-314.	0.5	16
101	Expression of a Y559F Mutant CSF-1 Receptor in M1 Myeloid Cells: A Role for Src Kinases in CSF-1 Receptor-Mediated Differentiation. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 1999, 1, 144-152.	1.7	33
102	Extended multidrug resistance in haemopoietic cells. British Journal of Haematology, 1996, 95, 587-595.	1.2	17
103	Expression of multidrug resistance in response to differentiation in the K562 human leukaemia cell line. Biochemical Pharmacology, 1995, 50, 475-480.	2.0	16
104	Differentiation and multidrug resistance in response to drug treatment in the K562 human leukaemia cell line. British Journal of Haematology, 1993, 84, 83-89.	1.2	20
105	The MTT cell viability assay for cytotoxicity testing in multidrug-resistant human leukemic cells. Leukemia Research, 1992, 16, 1165-1173.	0.4	148