Marek Trippenbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4155230/publications.pdf

Version: 2024-02-01

218381 214527 2,481 105 26 47 citations g-index h-index papers 105 105 105 1463 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Four-wave mixing with matter waves. Nature, 1999, 398, 218-220.	13.7	406
2	Structure of binary Bose-Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 4017-4031.	0.6	201
3	Measurement of the Coherence of a Bose-Einstein Condensate. Physical Review Letters, 1999, 83, 3112-3115.	2.9	169
4	Cold and trapped metastable noble gases. Reviews of Modern Physics, 2012, 84, 175-210.	16.4	119
5	Theory of four-wave mixing of matter waves from a Bose-Einstein condensate. Physical Review A, 2000, 62, .	1.0	85
6	Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media. Physical Review A, 1998, 57, 4791-4803.	1.0	84
7	Elastic Scattering Loss of Atoms from Colliding Bose-Einstein Condensate Wave Packets. Physical Review Letters, 2000, 84, 5462-5465.	2.9	63
8	Crossover from self-defocusing to discrete trapping in nonlinear waveguide arrays. Optics Express, 2006, 14, 254.	1.7	62
9	Four wave mixing in the scattering of Bose-Einstein condensates. Optics Express, 1998, 3, 530.	1.7	50
10	Spontaneous Four-Wave Mixing of de Broglie Waves: Beyond Optics. Physical Review Letters, 2010, 104, 150402.	2.9	47
11	Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride. Optical Materials Express, 2019, 9, 2264.	1.6	44
12	Supercontinuum generation in photonic crystal fibres with core filled with toluene. Journal of Optics (United Kingdom), 2017, 19, 125604.	1.0	40
13	Oscillating Solitons in a Three-Component Bose-Einstein Condensate. Physical Review Letters, 2010, 105, 125302.	2.9	37
14	Spectroscopy of cross correlations of environmental noises with two qubits. Physical Review A, 2016, 94, .	1.0	37
15	Quantum Multimode Model of Elastic Scattering from Bose-Einstein Condensates. Physical Review Letters, 2005, 94, 200401.	2.9	35
16	Spontaneous emission of atoms via collisions of Bose-Einstein condensates. Physical Review A, 2002, 65, .	1.0	34
17	Stabilization of three-dimensional matter-waves solitons in an optical lattice. Europhysics Letters, 2005, 70, 8-14.	0.7	34
18	Supercontinuum generation in photonic crystal fibers infiltrated with nitrobenzene. Laser Physics, 2020, 30, 035105.	0.6	34

#	Article	IF	Citations
19	Dynamics of short-pulse splitting in dispersive nonlinear media. Physical Review A, 1997, 56, 4242-4253.	1.0	33
20	Bose-Einstein condensates in time-dependent light potentials: Adiabatic and nonadiabatic behavior of nonlinear wave equations. Physical Review A, 2002, 65, .	1.0	33
21	Two-dimensional solitons in media with stripe-shaped nonlinearity modulation. Physical Review E, 2010, 82, 046602.	0.8	32
22	Radio-frequency output coupling of the Bose-Einstein condensate for atom lasers. Physical Review A, 1999, 59, 3823-3831.	1.0	31
23	Method for obtaining exact solutions of the nonlinear Schrödinger equation for a double-square-well potential. Physical Review A, 2006, 73, .	1.0	31
24	Critical fluctuations of an attractive Bose gas in a double-well potential. Europhysics Letters, 2008, 83, 64007.	0.7	30
25	Supermode spatial optical solitons in liquid crystals with competing nonlinearities. Physical Review A, 2017, 95, .	1.0	29
26	Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation. Laser Physics, 2019, 29, 075107.	0.6	28
27	Coherence properties of an atom laser. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 47-54.	0.6	27
28	Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids. Applied Optics, 2016, 55, 5033.	2.1	27
29	Semiclassical matrix elements, essential-states models and perturbation theory of above-threshold ionisation. Journal of Physics B: Atomic, Molecular and Optical Physics, 1989, 22, 1193-1205.	0.6	25
30	Adiabaticity in nonlinear quantum dynamics: Bose-Einstein condensate in a time-varying box. Physical Review A, 2002, 65, .	1.0	25
31	Elastic scattering losses from colliding Bose-Einstein condensates. Physical Review A, 2006, 73, .	1.0	25
32	Simple and efficient generation of gap solitons in Bose-Einstein condensates. Physical Review A, 2006, 73, .	1.0	22
33	Femtosecond supercontinuum generation around 1560  nm in hollow-core photonic crystal fibers filled with carbon tetrachloride. Applied Optics, 2020, 59, 3720.	0.9	22
34	Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water–ethanol mixture. Optics Communications, 2018, 407, 417-422.	1.0	19
35	Simulation of a Single Collision of Two Bose-Einstein Condensates. Physical Review Letters, 2006, 97, 170404.	2.9	18
36	Four-wave mixing in a parity-time (PT)-symmetric coupler. Optics Letters, 2015, 40, 5291.	1.7	18

3

#	Article	IF	Citations
37	Propagation of light pulses in nonisotropic media. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 1403.	0.9	17
38	The dynamics of two entangled qubits exposed to classical noise: role of spatial and temporal noise correlations. Quantum Information Processing, 2015, 14, 3367-3397.	1.0	17
39	An improved nonlinear optical pulse propagation equation. Optics Communications, 2002, 210, 385-391.	1.0	16
40	Competition between attractive and repulsive interactions in two-component Bose-Einstein condensates trapped in an optical lattice. Physical Review A, 2007, 76, .	1.0	16
41	Revivals in an attractive Bose-Einstein condensate in a double-well potential and their decoherence. Physical Review A, $2011, 83, .$	1.0	16
42	Angular distribution of photoelectrons in the above-threshold ionization of atomic hydrogen. Physical Review A, 1988, 37, 4194-4200.	1.0	15
43	Thermal effects in light scattering from ultracold bosons in an optical lattice. Physical Review A, 2009, 80, .	1.0	15
44	Optical Wave-Packet Propagation in Nonisotropic Media. Physical Review Letters, 1996, 76, 1457-1460.	2.9	14
45	Symmetric and asymmetric solitons trapped in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="sans-serif">H</mml:mi></mml:math> -shaped potentials. Physical Review A, 2011, 84, .	1.0	14
46	Semi-analytical approach to supermode spatial solitons formation in nematic liquid crystals. Optics Express, 2017, 25, 23893.	1.7	14
47	Self-consistent treatment of the full vectorial nonlinear optical pulse propagation equation in an isotropic medium. Optics Communications, 2003, 221, 337-351.	1.0	13
48	Class of compact entities in three-component Bose-Einstein condensates. Physical Review A, 2011, 83, .	1.0	13
49	Dispersion characteristics of a suspended-core optical fiber infiltrated with water. Applied Optics, 2017, 56, 1012.	2.1	13
50	Absorption-mediated stabilization of nonlinear propagation of vortex beams in nematic liquid crystals. Optics Communications, 2019, 451, 338-344.	1.0	13
51	Highly nonlinear dynamics of third-harmonic generation by focused beams. Physical Review A, 2004, 69,	1.0	12
52	Bose-Einstein condensate in a double well potential in the vicinity of a critical point. Laser Physics, 2010, 20, 671-677.	0.6	12
53	Single and double linear and nonlinear flatband chains: Spectra and modes. Physical Review E, 2017, 96, 012204.	0.8	12
54	Near-field and far-field propagation of beams and pulses in dispersive media. Optics Letters, 1997, 22, 579.	1.7	11

#	Article	IF	CITATIONS
55	Diagonal versus off-diagonal continuum–continuum couplings in the above-threshold ionization of hydrogen. Journal of the Optical Society of America B: Optical Physics, 1987, 4, 1429.	0.9	10
56	Above-threshold ionisation of the classical atom. Journal of Physics B: Atomic, Molecular and Optical Physics, 1988, 21, 1673-1680.	0.6	10
57	Stabilization of three-dimensional light bullets by a transverse lattice in a Kerr medium with dispersion management. Optics Communications, 2006, 259, 49-54.	1.0	10
58	Stabilization of solitons under competing nonlinearities by external potentials. Chaos, 2014, 24, 043136.	1.0	9
59	Spontaneous symmetry breaking of self-trapped and leaky modes in quasi-double-well potentials. Physical Review A, 2016, 93, .	1.0	9
60	Influence of temperature on dispersion properties of photonic crystal fibers infiltrated with water. Optical and Quantum Electronics, 2017, 49, 1.	1.5	9
61	Scalar and vector supermode solitons owing to competing nonlocal nonlinearities. Optics Express, 2021, 29, 8015.	1.7	9
62	Modulational instability of coupled ring waveguides with linear gain and nonlinear loss. Scientific Reports, 2017, 7, 4089.	1.6	8
63	Linear-versus-nonlinear regime in macroscopic quantum fluctuations of Stokes pulses. Physical Review A, 1985, 31, 1932-1935.	1.0	7
64	Elastic scattering losses in the four-wave mixing of Bose–Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, L391-L398.	0.6	7
65	Enhancement of third harmonic generation by wave vector mismatch to counter phase-modulation. Optics Communications, 2004, 229, 391-395.	1.0	7
66	Spatial control of the competition between self-focusing and self-defocusing nonlinearities in one-and two-dimensional systems. Physical Review A, 2014, 90, .	1.0	7
67	Cauchy–Schwarz inequality for general measurements as an entanglement criterion. Quantum Information Processing, 2016, 15, 269-278.	1.0	7
68	Supermode spatial solitons via competing nonlocal nonlinearities. Photonics Letters of Poland, 2018, 10, 33.	0.2	7
69	Loading Bose-Einstein-condensed atoms into the ground state of an optical lattice. Physical Review A, 2005, 72, .	1.0	6
70	Optical Thouless pumping transport and nonlinear switching in a topological low-dimensional discrete nematic liquid crystal array. Physical Review A, 2022, 105, .	1.0	6
71	An extended representation of three-spin-component Bose–Einstein condensate solitons. Physica D: Nonlinear Phenomena, 2012, 241, 1811-1814.	1.3	5
72	Route to chaos in a coupled microresonator system with gain and loss. Nonlinear Dynamics, 2019, 97, 559-569.	2.7	5

5

#	Article	lF	CITATIONS
73	Supercontinuum generation in benzene-filled hollow-core fibers. Optical Engineering, 2021, 60, .	0.5	5
74	Four-wave mixing with Bose-Einstein condensates in nonlinear lattices. Europhysics Letters, 2014, 105, 64002.	0.7	4
75	Full quantum state determination via time dependent spectrum data. Journal of Chemical Physics, 1996, 105, 8463-8466.	1.2	3
76	Feshbach Resonance without a Closed-Channel Bound State. Physical Review Letters, 2013, 111, 155301.	2.9	3
77	Vortex Creation without Stirring in Coupled Ring Resonators with Gain and Loss. Symmetry, 2018, 10, 195.	1.1	3
78	Four-wave mixing in spin–orbit coupled Bose–Einstein condensates. New Journal of Physics, 2020, 22, 053019.	1.2	3
79	Pair-correlation function of a metastable helium Bose-Einstein condensate. Physical Review A, 2004, 69, .	1.0	2
80	Applicability of suspended-core fibres for attenuation-based label-free biosensing. Optics Communications, 2017, 402, 290-295.	1.0	2
81	Nonlinear optical pulse propagation: expansion to all orders in diffraction and dispersion. , 2001, , .		1
82	Publisher's note: Adiabaticity in nonlinear quantum dynamics: Bose-Einstein condensate in a time-varying box [Phys. Rev. A65, 033607 (2002)]. Physical Review A, 2002, 65, .	1.0	1
83	Useful models of four-wave mixing in Bose–Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 4327-4337.	0.6	1
84	Two- and three-dimensional light bullets in a Kerr medium with dispersion management. , 2005, , .		1
85	Matter wave soliton collisions in the quasi one-dimensional potential. Physica D: Nonlinear Phenomena, 2009, 238, 1449-1455.	1.3	1
86	Symmetry breaking in the collisions of double channel BEC solitons. Physica D: Nonlinear Phenomena, 2014, 269, 37-41.	1.3	1
87	Stabilization of Light Bullets by a Transverse Lattice in a Kerr Medium with Dispersion Management. , 2005, , .		1
88	Linear and nonlinear light beam propagation in chiral nematic liquid crystal waveguides. Photonics Letters of Poland, 2016, 8, .	0.2	1
89	"Optical processes in nanostructures with gain and loss". , 2017, , .		1
90	Probing evanescent modes from near-field optical microscopes:. Ultramicroscopy, 1998, 71, 31-38.	0.8	0

#	Article	IF	Citations
91	Dynamics of short intense pulse propagation in dispersive media. , 1998, 3264, 132.		0
92	Nonlinear atom optics: four-wave mixing. , 2000, 3928, 272.		0
93	Propagation of ultrashort pulses through transparent dielectrics in nonlinear regime. , 2003, , .		0
94	Nonlinear propagation of femtosecond laser pulses in dielectrics., 2003, 5258, 20.		0
95	Observation of critical self focusing during propagation of femtosecond light pulses in bulk media., 2005,,.		0
96	Discrete self-trapping vs. defocusing in nonlinear waveguide arrays. , 2006, , .		0
97	Dispersion engineering in soft glass photonic crystal fibers infiltrated with liquids. Proceedings of SPIE, 2015, , .	0.8	0
98	Temperature sensitivity of photonic crystal fibers infiltrated with ethanol solutions., 2015,,.		0
99	Symmetry Breakings in Dual-Core Systems with Double-Spot Localization of Nonlinearity. Symmetry, 2018, 10, 156.	1.1	0
100	Conference on Nonlinear Optics and Novel Materials. Photonics Letters of Poland, 2016, 8, .	0.2	0
101	Optical properties of nanostructured gradient index vortex masks. , 2018, , .		0
102	Development of nanostructured gradient index microlenses for mid infrared. , 2018, , .		0
103	Development of nanostructured GRIN microlenses with temperature-controlled diffusion., 2019,,.		0
104	On the nonlinear dynamics of coupled micro-resonators. , 2019, , .		0
105	Atoms in a spin dependent optical potential: ground state topology and magnetization. New Journal of Physics, 2022, 24, 033041.	1.2	0