Jadwiga Handzlik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4155175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of novel organic selenium compounds and speciation of their metabolites in biofortified kale sprouts. Microchemical Journal, 2022, 172, 106962.	2.3	9
2	Pharmaceutical and Safety Profile Evaluation of Novel Selenocompounds with Noteworthy Anticancer Activity. Pharmaceutics, 2022, 14, 367.	2.0	11
3	An exit beyond the pharmacophore model for 5-HT6R agents - a new strategy to gain dual 5-HT6/5-HT2A action for triazine derivatives with procognitive potential. Bioorganic Chemistry, 2022, 121, 105695.	2.0	8
4	2-{5-[(Z,2Z)-2-Chloro-3-(4-nitrophenyl)-2-propenylidene]-4-oxo-2-thioxothiazolidin-3-yl}-3-methylbutanoic Acid as a Potential Anti-Breast Cancer Molecule. International Journal of Molecular Sciences, 2022, 23, 4091.	1.8	6
5	Varied effect of fortification of kale sprouts with novel organic selenium compounds on the synthesis of sulphur and phenolic compounds in relation to cytotoxic, antioxidant and anti-inflammatory activity. Microchemical Journal, 2022, 179, 107509.	2.3	11
6	Structure Prediction, Evaluation, and Validation of GPR18 Lipid Receptor Using Free Programs. International Journal of Molecular Sciences, 2022, 23, 7917.	1.8	0
7	The innovative potential of selenium-containing agents for fighting cancer and viral infections. Drug Discovery Today, 2021, 26, 256-263.	3.2	39
8	The relationship between stereochemical and both, pharmacological and ADME-Tox, properties of the potent hydantoin 5-HT7R antagonist MF-8. Bioorganic Chemistry, 2021, 106, 104466.	2.0	1
9	Molecular Insights into an Antibiotic Enhancer Action of New Morpholine-Containing 5-Arylideneimidazolones in the Fight against MDR Bacteria. International Journal of Molecular Sciences, 2021, 22, 2062.	1.8	7
10	An insight into the structure of 5-spiro aromatic derivatives of imidazolidine-2,4-dione, a new group of very potent inhibitors of tumor multidrug resistance in T-lymphoma cells. Bioorganic Chemistry, 2021, 109, 104735.	2.0	9
11	Computerâ€Aided Search for 5â€Arylideneimidazolone Anticancer Agents Able To Overcome ABCB1â€Based Multidrug Resistance. ChemMedChem, 2021, 16, 2386-2401.	1.6	4
12	Novel N-Substituted 3-Aryl-4-(diethoxyphosphoryl)azetidin-2-ones as Antibiotic Enhancers and Antiviral Agents in Search for a Successful Treatment of Complex Infections. International Journal of Molecular Sciences, 2021, 22, 8032.	1.8	5
13	Crystallographic studies of piperazine derivatives of 3-methyl-5-spirofluorenehydantoin in search of structural features of P-gp inhibitors. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 467-478.	0.2	4
14	N-Skatyltryptamines—Dual 5-HT6R/D2R Ligands with Antipsychotic and Procognitive Potential. Molecules, 2021, 26, 4605.	1.7	3
15	Cyanobiphenyls: Novel H3 receptor ligands with cholinesterase and MAO B inhibitory activity as multitarget compounds for potential treatment of Alzheimer's disease. Bioorganic Chemistry, 2021, 114, 105129.	2.0	8
16	Chemical update on the potential for serotonin 5-HT6 and 5-HT7 receptor agents in the treatment of Alzheimer's disease. Bioorganic and Medicinal Chemistry Letters, 2021, 49, 128275.	1.0	23
17	Low Basicity as a Characteristic for Atypical Ligands of Serotonin Receptor 5-HT2. International Journal of Molecular Sciences, 2021, 22, 1035.	1.8	3
18	The Phenoxyalkyltriazine Antagonists for 5-HT6 Receptor with Promising Procognitive and Pharmacokinetic Properties In Vivo in Search for a Novel Therapeutic Approach to Dementia Diseases. International Journal of Molecular Sciences, 2021, 22, 10773.	1.8	11

#	Article	IF	CITATIONS
19	Histamine H3 Receptor Ligands—KSK-59 and KSK-73—Reduce Body Weight Gain in a Rat Model of Excessive Eating. Pharmaceuticals, 2021, 14, 1080.	1.7	3
20	The Structural Determinants for α1-Adrenergic/Serotonin Receptors Activity among Phenylpiperazine-Hydantoin Derivatives. Molecules, 2021, 26, 7025.	1.7	4
21	Rational design of new multitarget histamine H3 receptor ligands as potential candidates for treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2020, 207, 112743.	2.6	17
22	N-Substituted piperazine derivatives as potential multitarget agents acting on histamine H3 receptor and cancer resistance proteins. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127522.	1.0	9
23	Phenylpiperazine 5,5-Dimethylhydantoin Derivatives as First Synthetic Inhibitors of Msr(A) Efflux Pump in Staphylococcus epidermidis. Molecules, 2020, 25, 3788.	1.7	7
24	Search for ABCB1 Modulators Among 2-Amine-5-Arylideneimidazolones as a New Perspective to Overcome Cancer Multidrug Resistance. Molecules, 2020, 25, 2258.	1.7	11
25	Discovery of phenylselenoether-hydantoin hybrids as ABCB1 efflux pump modulating agents with cytotoxic and antiproliferative actions in resistant T-lymphoma. European Journal of Medicinal Chemistry, 2020, 200, 112435.	2.6	30
26	Antitubercular polyhalogenated phenothiazines and phenoselenazine with reduced binding to CNS receptors. European Journal of Medicinal Chemistry, 2020, 201, 112420.	2.6	12
27	Chlorine substituents and linker topology as factors of 5-HT6R activity for novel highly active 1,3,5-triazine derivatives with procognitive properties inÂvivo. European Journal of Medicinal Chemistry, 2020, 203, 112529.	2.6	14
28	In silico and in vitro studies on interaction of novel non-imidazole histamine H3R antagonists with CYP3A4. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127147.	1.0	3
29	The 1,3,5-Triazine Derivatives as Innovative Chemical Family of 5-HT6 Serotonin Receptor Agents with Therapeutic Perspectives for Cognitive Impairment. International Journal of Molecular Sciences, 2019, 20, 3420.	1.8	43
30	The Search for Histamine H 4 Receptor Ligands with Anticancer Activity among Novel (Thio)urea Derivatives. ChemistrySelect, 2019, 4, 10943-10952.	0.7	4
31	5-Arylideneimidazolones with Amine at Position 3 as Potential Antibiotic Adjuvants against Multidrug Resistant Bacteria. Molecules, 2019, 24, 438.	1.7	11
32	Synthesis and computer-aided SAR studies for derivatives of phenoxyalkyl-1,3,5-triazine as the new potent ligands for serotonin receptors 5-HT6. European Journal of Medicinal Chemistry, 2019, 178, 740-751.	2.6	18
33	Selenocompounds as Novel Antibacterial Agents and Bacterial Efflux Pump Inhibitors. Molecules, 2019, 24, 1487.	1.7	26
34	Fluorinated indole-imidazole conjugates: Selective orally bioavailable 5-HT7 receptor low-basicity agonists, potential neuropathic painkillers. European Journal of Medicinal Chemistry, 2019, 170, 261-275.	2.6	22
35	Pronounced activity of aromatic selenocyanates against multidrug resistant ESKAPE bacteria. New Journal of Chemistry, 2019, 43, 6021-6031.	1.4	23
36	Are the Hydantoin-1,3,5-triazine 5-HT6R Ligands a Hope to a Find New Procognitive and Anti-Obesity Drug? Considerations Based on Primary In Vivo Assays and ADME-Tox Profile In Vitro. Molecules, 2019, 24, 4472.	1.7	18

#	Article	IF	CITATIONS
37	Highly efficient microwave synthesis of rhodanine and 2-thiohydantoin derivatives and determination of relationships between their chemical structures and antibacterial activity. RSC Advances, 2019, 9, 39367-39380.	1.7	19
38	Pharmacophoric features for a very potent 5â€spirofluorenehydantoin inhibitor of cancer efflux pump <scp>ABCB</scp> 1, based on Xâ€ray analysis. Chemical Biology and Drug Design, 2019, 93, 844-853.	1.5	12
39	Synthesis and computer-aided analysis of the role of linker for novel ligands of the 5-HT6 serotonin receptor among substituted 1,3,5-triazinylpiperazines. Bioorganic Chemistry, 2019, 84, 319-325.	2.0	13
40	Novel naphthyloxy derivatives – Potent histamine H3 receptor ligands. Synthesis and pharmacological evaluation. Bioorganic and Medicinal Chemistry, 2018, 26, 2573-2585.	1.4	24
41	Computer-aided insights into receptor-ligand interaction for novel 5-arylhydantoin derivatives as serotonin 5-HT 7 receptor agents with antidepressant activity. European Journal of Medicinal Chemistry, 2018, 147, 102-114.	2.6	16
42	MF-8, a novel promising arylpiperazine-hydantoin based 5-HT 7 receptor antagonist: In vitro drug-likeness studies and in vivo pharmacological evaluation. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 878-883.	1.0	36
43	Computer-Aided Studies for Novel Arylhydantoin 1,3,5-Triazine Derivatives as 5-HT6 Serotonin Receptor Ligands with Antidepressive-Like, Anxiolytic and Antiobesity Action In Vivo. Molecules, 2018, 23, 2529.	1.7	18
44	Search for a 5-CT alternative. <i>In vitro</i> and <i>in vivo</i> evaluation of novel pharmacological tools: 3-(1-alkyl-1 <i>H</i> -imidazol-5-yl)-1 <i>H</i> -indole-5-carboxamides, low-basicity 5-HT ₇ receptor agonists. MedChemComm, 2018, 9, 1882-1890.	3.5	27
45	The Anticancer and Chemopreventive Activity of Selenocyanate-Containing Compounds. Current Pharmacology Reports, 2018, 4, 468-481.	1.5	48
46	Studies on Anticonvulsant Effects of Novel Histamine H3R Antagonists in Electrically and Chemically Induced Seizures in Rats. International Journal of Molecular Sciences, 2018, 19, 3386.	1.8	18
47	Influence of 3-{5-[4-(diethylamino)benzylidene]rhodanine}propionic acid on the conformation of 5-(4-chlorobenzylidene)-2-(4-methylpiperazin-1-yl)-3 <i>H</i> -imidazol-4(5 <i>H</i>)-one. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1427-1433.	0.2	5
48	Selenides and Diselenides: A Review of Their Anticancer and Chemopreventive Activity. Molecules, 2018, 23, 628.	1.7	120
49	The role of aryl-topology in balancing between selective and dual 5-HT ₇ R/5-HT _{1A} actions of 3,5-substituted hydantoins. MedChemComm, 2018, 9, 1033-1044.	3.5	7
50	Anticonvulsant evaluation of novel non-imidazole histamine H3R antagonists in different convulsion models in rats. Pharmacology Biochemistry and Behavior, 2018, 170, 14-24.	1.3	8
51	Tricyclic xanthine derivatives containing a basic substituent: adenosine receptor affinity and drug-related properties. MedChemComm, 2018, 9, 951-962.	3.5	9
52	The Selenium-Nitrogen Bond as Basis for Reactive Selenium Species with Pronounced Antimicrobial Activity. Current Organic Synthesis, 2018, 14, .	0.7	5
53	Natural selenium particles from Staphylococcus carnosus: Hazards or particles with particular promise?. Journal of Hazardous Materials, 2017, 324, 22-30.	6.5	49
54	Selenoesters and selenoanhydrides as novel multidrug resistance reversing agents: A confirmation study in a colon cancer MDR cell line. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 797-802.	1.0	60

#	Article	IF	CITATIONS
55	The computer-aided discovery of novel family of the 5-HT6 serotonin receptor ligands among derivatives of 4-benzyl-1,3,5-triazine. European Journal of Medicinal Chemistry, 2017, 135, 117-124.	2.6	33
56	Low-basicity 5-HT7 Receptor Agonists Synthesized Using the van Leusen Multicomponent Protocol. Scientific Reports, 2017, 7, 1444.	1.6	18
57	Spectroscopic investigations of novel pharmaceuticals: Stability and resonant interaction with laser beam. Applied Surface Science, 2017, 417, 143-148.	3.1	2
58	In the search for a lead structure among series of potent and selective hydantoin 5â€ <scp>HT</scp> ₇ R agents: The drugâ€likeness in vitro study. Chemical Biology and Drug Design, 2017, 90, 1295-1306.	1.5	41
59	Biphenyloxy-alkyl-piperidine and azepane derivatives as histamine H3 receptor ligands. Bioorganic and Medicinal Chemistry, 2017, 25, 5341-5354.	1.4	16
60	Conformational study of (<i>Z</i>)-5-(4-chlorobenzylidene)-2-[4-(2-hydroxyethyl)piperazin-1-yl]-3 <i>H</i> -imidazol-4(5 <i>H</i>)-one in different environments: insight into the structural properties of bacterial efflux pump inhibitors. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 1151-1157.	0.2	6
61	Selenazolinium Salts as "Small Molecule Catalysts―with High Potency against ESKAPE Bacterial Pathogens. Molecules, 2017, 22, 2174.	1.7	26
62	In Vitro Effects of Bromoalkyl Phenytoin Derivatives on Regulated Death, Cell Cycle and Ultrastructure of Leukemia Cells. Anticancer Research, 2017, 37, 6373-6380.	0.5	2
63	Efflux Pump Blockers in Gram-Negative Bacteria: The New Generation of Hydantoin Based-Modulators to Improve Antibiotic Activity. Frontiers in Microbiology, 2016, 7, 622.	1.5	17
64	Turning Waste into Value: Nanosized Natural Plant Materials of Solanum incanum L. and Pterocarpus erinaceus Poir with Promising Antimicrobial Activities. Pharmaceutics, 2016, 8, 11.	2.0	24
65	Identification of selenocompounds with promising properties to reverse cancer multidrug resistance. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2821-2824.	1.0	53
66	The 5-aromatic hydantoin-3-acetate derivatives as inhibitors of the tumour multidrug resistance efflux pump P-glycoprotein (ABCB1): Synthesis, crystallographic and biological studies. Bioorganic and Medicinal Chemistry, 2016, 24, 2815-2822.	1.4	33
67	Rational design in search for 5-phenylhydantoin selective 5-HT7R antagonists. Molecular modeling, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2016, 112, 258-269.	2.6	21
68	Similarities and differences in affinity and binding modes of tricyclic pyrimido- and pyrazinoxanthines at human and rat adenosine receptors. Bioorganic and Medicinal Chemistry, 2016, 24, 4347-4362.	1.4	20
69	Novel Piperazine Arylideneimidazolones Inhibit the AcrAB-TolC Pump in Escherichia coli and Simultaneously Act as Fluorescent Membrane Probes in a Combined Real-Time Influx and Efflux Assay. Antimicrobial Agents and Chemotherapy, 2016, 60, 1974-1983.	1.4	36
70	Laser beam resonant interaction of new hydantoin derivatives droplets for possible biomedical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505, 37-46.	2.3	3
71	Aspects of a Distinct Cytotoxicity of Selenium Salts and Organic Selenides in Living Cells with Possible Implications for Drug Design. Molecules, 2015, 20, 13894-13912.	1.7	23
72	Imidazolidine-4-one derivatives in the search for novel chemosensitizers of Staphylococcus aureus MRSA: Synthesis, biological evaluation and molecular modeling studies. European Journal of Medicinal Chemistry, 2015, 101, 313-325.	2.6	22

#	Article	IF	CITATIONS
73	SAR-studies on the importance of aromatic ring topologies in search for selective 5-HT7 receptor ligands among phenylpiperazine hydantoin derivatives. European Journal of Medicinal Chemistry, 2014, 78, 324-339.	2.6	36
74	Synthesis, biological activity and molecular modelling studies of tricyclic alkylimidazo-, pyrimido- and diazepinopurinediones. Purinergic Signalling, 2013, 9, 395-414.	1.1	16
75	Temperature dependence of the interaction of prazosin with lipid Langmuir monolayers. Colloids and Surfaces B: Biointerfaces, 2013, 112, 171-176.	2.5	15
76	Recent Advances in Multi-Drug Resistance (MDR) Efflux Pump Inhibitors of Gram-Positive Bacteria S. aureus. Antibiotics, 2013, 2, 28-45.	1.5	126
77	Search for new tools to combat Gram-negative resistant bacteria among amine derivatives of 5-arylidenehydantoin. Bioorganic and Medicinal Chemistry, 2013, 21, 135-145.	1.4	29
78	Synthesis and SAR-study for novel arylpiperazine derivatives of 5-arylidenehydantoin with α1-adrenoceptor antagonistic properties. Bioorganic and Medicinal Chemistry, 2012, 20, 4245-4257.	1.4	23
79	Interaction of prazosin with model membranes — A Langmuir monolayer study. Bioelectrochemistry, 2012, 87, 96-103.	2.4	25
80	Antiarrhythmic properties of phenylpiperazine derivatives of phenytoin with α1-adrenoceptor affinities. Bioorganic and Medicinal Chemistry, 2012, 20, 2290-2303.	1.4	29
81	The activity of 16 new hydantoin compounds on the intrinsic and overexpressed efflux pump system of Staphylococcus aureus. In Vivo, 2012, 26, 223-9.	0.6	9
82	Activity of fourteen new hydantoin compounds on the human ABCB1 efflux pump. In Vivo, 2012, 26, 293-7.	0.6	3
83	5-arylidene(thio)hydantoin derivatives as modulators of cancer efflux pump. Acta Poloniae Pharmaceutica, 2012, 69, 149-56.	0.3	7
84	Inhibitors of bacterial efflux pumps that also inhibit efflux pumps of cancer cells. Anticancer Research, 2012, 32, 2947-57.	0.5	16
85	Synthesis and biological activity of tricyclic cycloalkylimidazo-, pyrimido- and diazepinopurinediones. European Journal of Medicinal Chemistry, 2011, 46, 3590-3607.	2.6	32
86	Amine–alkyl derivatives of hydantoin: New tool to combat resistant bacteria. European Journal of Medicinal Chemistry, 2011, 46, 5807-5816.	2.6	39
87	Strategies for bypassing the membrane barrier in multidrug resistant Gramâ€negative bacteria. FEBS Letters, 2011, 585, 1682-1690.	1.3	192
88	Pharmacophore models based studies on the affinity and selectivity toward 5-HT1A with reference to α1-adrenergic receptors among arylpiperazine derivatives of phenytoin. Bioorganic and Medicinal Chemistry, 2011, 19, 1349-1360.	1.4	23
89	N-Alkenyl and cycloalkyl carbamates as dual acting histamine H3 and H4 receptor ligands. Bioorganic and Medicinal Chemistry, 2011, 19, 2850-2858.	1.4	20
90	Biological activity of twenty-three hydantoin derivatives on intrinsic efflux pump system of Salmonella enterica serovar Enteritidis NCTC 13349. In Vivo, 2011, 25, 769-72.	0.6	23

#	Article	IF	CITATIONS
91	Modulation of multidrug efflux pump activity by new hydantoin derivatives on colon adenocarcinoma cells without inducing apoptosis. Anticancer Research, 2011, 31, 3285-8.	0.5	15
92	Search for influence of spatial properties on affinity at $\hat{l}\pm 1$ -adrenoceptor subtypes for phenylpiperazine derivatives of phenytoin. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6152-6156.	1.0	18
93	Biological activity of hydantoin derivatives on P-glycoprotein (ABCB1) of mouse lymphoma cells. Anticancer Research, 2010, 30, 4867-71.	0.5	26
94	Interactions of phenytoin with lipids in mixed Langmuir monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 52-59.	2.3	3
95	Synthesis, α1-adrenoceptor antagonist activity, and SAR study of novel arylpiperazine derivatives of phenytoin. Bioorganic and Medicinal Chemistry, 2008, 16, 5982-5998.	1.4	42
96	Synthesis and evaluation of in vivo activity of diphenylhydantoin basic derivatives. European Journal of Medicinal Chemistry, 2004, 39, 1013-1027.	2.6	45
97	Structure and activity studies of glycine receptor ligands. Part 8. Arylidene-imidazoline-4-one aminoacids. Journal of Molecular Structure, 2003, 649, 25-36.	1.8	6