Anastasia Hiskia

List of Publications by Citations

Source: https://exaly.com/author-pdf/4155156/anastasia-hiskia-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 100
 4,224
 39
 64

 papers
 h-index
 g-index

 106
 4,605
 7.6
 5.17

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
100	Comparison of the photoredox properties of polyoxometallates and semiconducting particles. <i>Chemical Society Reviews</i> , 2001 , 30, 62-69	58.5	425
99	Synthesis of Metal Nanoparticles by Using Polyoxometalates as Photocatalysts and Stabilizers. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 1911	16.4	248
98	Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3,5-dichlorophenol degradation. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2002 , 149, 237-245	4.7	180
97	Efficient removal of microcystin-LR by UV-C/HDIIn synthetic and natural water samples. <i>Water Research</i> , 2012 , 46, 1501-10	12.5	178
96	Destruction of microcystins by conventional and advanced oxidation processes: A review. <i>Separation and Purification Technology</i> , 2012 , 91, 3-17	8.3	156
95	Photocatalytic oxidation of organic compounds by polyoxometalates of molybdenum and tungsten. Catalyst regeneration by dioxygen. <i>Inorganic Chemistry</i> , 1992 , 31, 163-167	5.1	134
94	Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C-TiO2. <i>Water Research</i> , 2016 , 90, 52-61	12.5	131
93	A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin. <i>Environmental Sciences: Processes and Impacts</i> , 2013 , 15, 1979-2003	4.3	128
92	Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins. <i>Toxins</i> , 2018 , 10,	4.9	109
91	Identification of photocatalytic degradation products of diazinon in TiO2 aqueous suspensions using GC/MS/MS and LC/MS with quadrupole time-of-flight mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2003 , 14, 803-17	3.5	101
90	Preparation, fractal surface morphology and photocatalytic properties of TiO2 films. <i>Thin Solid Films</i> , 1999 , 357, 173-178	2.2	93
89	New SPE-LC-MS/MS method for simultaneous determination of multi-class cyanobacterial and algal toxins. <i>Journal of Hazardous Materials</i> , 2017 , 323, 56-66	12.8	87
88	Photocatalytic reductiveBxidative degradation of Acid Orange 7 by polyoxometalates. <i>Applied Catalysis B: Environmental</i> , 2009 , 86, 98-107	21.8	81
87	Photolytic degradation of all chlorophenols with polyoxometallates and H2O2. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2002 , 148, 191-197	4.7	78
86	New aspect of the mechanism of photocatalytic oxidation of organic compounds by polyoxometalates in aqueous solutions. The selective photooxidation of propan-2-ol to propanone: The role of OH radicals. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 437-440	3.6	77
85	Photocatalytic reduction of chromium and oxidation of organics by polyoxometalates. <i>Applied Catalysis B: Environmental</i> , 2006 , 62, 28-34	21.8	73
84	Contribution to water purification using polyoxometalates. Aromatic derivatives, chloroacetic acids. <i>Journal of Molecular Catalysis A</i> , 1996 , 114, 191-200		73

(1998-2015)

Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): influence of variable amino acids on the degradation kinetics and reaction mechanisms. <i>Water Research</i> , 2015 , 74, 227-38	12.5	70
Photocatalytic reduction and recovery of copper by polyoxometalates. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	65
Photocatalysis by polyoxometallates and TiO2: A comparative study. <i>Catalysis Today</i> , 2007 , 124, 149-15.	5 5.3	64
Light Induced Elimination of Mono- and Polychlorinated Phenols from Aqueous Solutions by PW12O403 The Case of 2,4,6-Trichlorophenol. <i>Environmental Science & Environmental </i>	1 ⁻¹ 2028	62
Can we effectively degrade microcystins?Implications on human health. <i>Anti-Cancer Agents in Medicinal Chemistry</i> , 2011 , 11, 19-37	2.2	59
Determination of microcystins and nodularin (cyanobacterial toxins) in water by LC-MS/MS. Monitoring of Lake Marathonas, a water reservoir of Athens, Greece. <i>Journal of Hazardous</i> <i>Materials</i> , 2013 , 263 Pt 1, 105-15	12.8	57
Photocatalytic Degradation of Microcystin-LR and Off-Odor Compounds in Water under UV-A and Solar Light with a Nanostructured Photocatalyst Based on Reduced Graphene OxideTiO2 Composite. Identification of Intermediate Products <i>Industrial & Description of Intermediate Products Industrial & Description of Intermediate Products I</i>	3.9	57
Light-cured or chemically cured orthodontic adhesive resins? A selection based on the degree of cure, monomer leaching, and cytotoxicity. <i>American Journal of Orthodontics and Dentofacial Orthopedics</i> , 2005 , 127, 413-9; quiz 516	2.1	56
Sonolytic, photolytic, and photocatalytic decomposition of atrazine in the presence of polyoxometalates. <i>Environmental Science & Environmental & Envi</i>	10.3	55
Photolytic and photocatalytic decomposition of fenitrothion by PW12O403 and TiO2: a comparative study. <i>Applied Catalysis B: Environmental</i> , 2004 , 48, 175-183	21.8	50
Photocatalytic reduction ecovery of silver using polyoxometalates. <i>Applied Catalysis B: Environmental</i> , 2003 , 42, 305-315	21.8	49
Photocatalytic degradation of lindane by polyoxometalates: Intermediates and mechanistic aspects. <i>Catalysis Today</i> , 2010 , 151, 119-124	5.3	48
Photocatalytic degradation of cylindrospermopsin under UV-A, solar and visible light using TiO2. Mineralization and intermediate products. <i>Chemosphere</i> , 2015 , 119 Suppl, S89-94	8.4	45
Assessment of bisphenol-A release from orthodontic adhesives. <i>American Journal of Orthodontics and Dentofacial Orthopedics</i> , 2007 , 131, 72-5	2.1	45
On the photooxidative behavior of TiO2 and PW12O403EOH radicals versus holes. <i>Applied Catalysis B: Environmental</i> , 2006 , 68, 139-146	21.8	45
Reduction and recovery of metals from aqueous solutions with polyoxometallates. <i>New Journal of Chemistry</i> , 2001 , 25, 361-363	3.6	45
Photocatalytic reduction of metals using polyoxometallates: recovery of metals or synthesis of metal nanoparticles. <i>Comptes Rendus Chimie</i> , 2006 , 9, 851-857	2.7	44
Determination of Organophosphorus Pesticide Residues in Greek Virgin Olive Oil by Capillary Gas Chromatography. <i>Journal of Agricultural and Food Chemistry</i> , 1998 , 46, 570-574	5.7	44
	oxidation processes (AOPs): influence of variable amino acids on the degradation kinetics and reaction mechanisms. <i>Water Research</i> , 2015, 74, 227-38 Photocatalytic reduction and recovery of copper by polyoxometalates. <i>Environmental Science & Amp; Technology</i> , 2002, 36, 5355-62 Photocatalysis by polyoxometallates and TiO2: A comparative study. <i>Catalysis Today</i> , 2007, 124, 149-15. Light Induced Elimination of Mono- and Polychlorinated Phenols from Aqueous Solutions by PW12O403 The Case of 2,4.6-Trichlorophenol. <i>Environmental Science & Amp; Technology</i> , 2000, 34, 202-203. The Case of 2,4.6-Trichlorophenol. <i>Environmental Science & Amp; Technology</i> , 2000, 34, 202-203. The Case of 2,4.6-Trichlorophenol. <i>Environmental Science & Amp; Technology</i> , 2000, 34, 202-203. The Case of 2,4.6-Trichlorophenol. <i>Environmental Science & Amp; Technology</i> , 2000, 34, 202-203. The Case of 2,4.6-Trichlorophenol. <i>Environmental Science & Amp; Technology</i> , 2000, 34, 202-203. The Case of 2,4.6-Trichlorophenol. <i>Environmental Science & Amp; Technology</i> , 2001, 31, 203-203. Can we effectively degrade microcystins-2-Implications on human health. <i>Anti-Cancer Agents in Medicinal Chemistry</i> . 2011, 11, 19-37 Determination of microcystins and nodularin (cyanobacterial toxins) in water by LC-MS/MS. Monitoring of Lake Marathonas, a water reservoir of Athens, Greece. <i>Journal of Hazardous Materials</i> , 2013, 263 Pt 1, 105-15 Determination of microcystins-1. Rand Off-Odor Compounds in Water under UV-A and Solar Light with a Nanostructured Photocatalystal Based on Reduced Graphene OxideIIIO2 Composite. Identification of Intermediate Products. <i>Industrial & Amp; Engineering Chemistry</i> . Light-cured or chemically cured orthodontic adhesive resins? A selection based on the degree of cure, monomer leaching, and cytotoxicity. <i>American Journal of Orthodontics and Dentofacial Orthopedics</i> , 2005, 127, 413-9; quiz 516 Sonolytic, photolytic, and photocatalytic decomposition of fenitrothion by PW12O403land TiO2: a comparative study. <i>Applied Catalysi</i>	oxidation processes (AOPs): influence of variable amino acids on the degradation kinetics and reaction mechanisms. <i>Water Research</i> , 2015, 74, 227-38 Photocatalytic reduction and recovery of copper by polyoxometalates. <i>Environmental Science & Amp; Technology</i> , 2002, 36, 5355-62 Photocatalysis by polyoxometallates and TiO2: A comparative study. <i>Catalysis Today</i> , 2007, 124, 149-1555,3 Light induced Elimination of Mono- and Polychlorinated Phenols from Aqueous Solutions by PW12O403 The Case of 2,4,6-Trichlorophenol. <i>Environmental Science & Amp; Technology</i> , 2000, 34, 2024-2028. Can we effectively degrade microcystins?—Implications on human health. <i>Anti-Cancer Agents in Medicinal Chemistry</i> , 2011, 11, 19-37 Determination of microcystins and nodularin (cyanobacterial toxins) in water by LC-Ms/Ms. Monitoring of Lake Marathonas, a water reservoir of Athens, Greece. <i>Journal of Hazardous Materials</i> , 2013, 263 Pt.1, 105-15 Photocatalytic Degradation of Microcystin-LR and Off-Odor Compounds in Water under UV-A and Solar Light with a Nanostructured Photocatalyst Based on Reduced Graphene Oxideffilo2 Gromposite. Clentification of Intermediate Products. <i>Industrial & Amp; Engineering Chemistry</i> Light-cursed or chemically cursed orthodontic adhesive resins? A selection based on the degree of cure, monomer leaching, and cytotoxicity. <i>American Journal of Orthodontics and Dentofacial</i> 2.1 Orthopedics, 2005, 127, 413-9; quiz 516 Sonolytic, photolytic, and photocatalytic decomposition of fenitrothion by PW12O403iand TiO2: a comparative study. <i>Applied Catalysis B: Environmental</i> , 2004, 48, 175-183 Photocatalytic reductionfecovery of silver using polyoxometalates. <i>Applied Catalysis B: Environmental</i> , 2003, 42, 305-315 Photocatalytic degradation of Indane by polyoxometalates: Intermediates and mechanistic aspects. <i>Catalysis Today</i> , 2010, 151, 119-124 Photocatalytic degradation of TiO2 and PW12O403IOH radicals versus holes. <i>Applied Catalysis B: Environmental</i> , 2006, 68, 139-146 Photocatalytic peduction and in

65	Determination of organochlorine pesticide residues in honey, applying solid phase extraction with RP-C18 material. <i>Analyst, The</i> , 1999 , 124, 473-5	5	42
64	Occurrence and diversity of cyanotoxins in Greek lakes. <i>Scientific Reports</i> , 2018 , 8, 17877	4.9	42
63	Toxic cyanobacteria and cyanotoxins in European waters Irecent progress achieved through the CYANOCOST Action and challenges for further research. <i>Advances in Oceanography and Limnology</i> , 2017 , 8,	1.3	39
62	Photocatalytic reduction and recovery of mercury by polyoxometalates. <i>Environmental Science & Environmental Science</i>	10.3	39
61	A Collaborative Evaluation of LC-MS/MS Based Methods for BMAA Analysis: Soluble Bound BMAA Found to Be an Important Fraction. <i>Marine Drugs</i> , 2016 , 14,	6	39
60	Development of an integrated laboratory system for the monitoring of cyanotoxins in surface and drinking waters. <i>Toxicon</i> , 2010 , 55, 979-89	2.8	37
59	Photocatalytic reductive destruction of azo dyes by polyoxometallates: Naphthol blue black. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2007 , 188, 272-278	4.7	37
58	Photolytic and photocatalytic decomposition of bromomethanes in irradiated aqueous solutions. <i>Applied Catalysis B: Environmental</i> , 1999 , 21, 191-202	21.8	37
57	Polyoxometallate photocatalysis for decontaminating the aquatic environment from organic and inorganic pollutants. <i>International Journal of Environmental Analytical Chemistry</i> , 2006 , 86, 233-242	1.8	35
56	Development of a fast and selective method for the sensitive determination of anatoxin-a in lake waters using liquid chromatography-tandem mass spectrometry and phenylalanine-d5 as internal standard. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 397, 2245-52	4.4	33
55	Selective photocatalytic reduction ecovery of palladium using polyoxometallates. <i>Applied Catalysis B: Environmental</i> , 2004 , 52, 41-48	21.8	33
54	Rate-Redox-Controlled Size-Selective Synthesis of Silver Nanoparticles Using Polyoxometalates. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 5579-5586	2.3	32
53	Photocatalytic degradation of water taste and odour compounds in the presence of polyoxometalates and TiO2: Intermediates and degradation pathways. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2014 , 286, 1-9	4.7	30
52	Polyoxometallates as effective photocatalysts in water purification from pesticides. <i>International Journal of Photoenergy</i> , 2004 , 6, 227-231	2.1	26
51	Photocatalytic synthesis of Se nanoparticles using polyoxometalates. <i>Catalysis Today</i> , 2009 , 144, 2-6	5.3	24
50	Purine 5\$8-cyclo-2Sdeoxynucleoside lesions: formation by radical stress and repair in human breast epithelial cancer cells. <i>Free Radical Research</i> , 2017 , 51, 470-482	4	20
49	Diversity, Cyanotoxin Production, and Bioactivities of Cyanobacteria Isolated from Freshwaters of Greece. <i>Toxins</i> , 2019 , 11,	4.9	19
48	Photocatalytic transformations of CCl3Br, CBr3F, CHCl2Br and CH2BrCl in aerobic and anaerobic conditions. <i>Applied Catalysis B: Environmental</i> , 2001 , 29, 23-34	21.8	19

47	Selective photocatalytic oxidation of alcohols by heteropolytungstates. <i>Polyhedron</i> , 1988 , 7, 477-481	2.7	19
46	First report of Aphanizomenon favaloroi occurrence in Europe associated with saxitoxins and a massive fish kill in Lake Vistonis, Greece. <i>Marine and Freshwater Research</i> , 2017 , 68, 793	2.2	18
45	Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria-based food supplements. <i>Journal of Hazardous Materials</i> , 2019 , 365, 346-365	12.8	18
44	Development of a rapid and sensitive method for the simultaneous determination of 1,2-dibromoethane, 1,4-dichlorobenzene and naphthalene residues in honey using HS-SPME coupled with GC-MS. <i>Analytica Chimica Acta</i> , 2008 , 617, 64-71	6.6	17
43	Monitoring a newly re-born patient: water quality and cyanotoxin occurrence in a reconstructed shallow Mediterranean lake. <i>Advances in Oceanography and Limnology</i> , 2017 , 8,	1.3	15
42	Synthesis of Metal Nanoparticles by Using Polyoxometalates as Photocatalysts and Stabilizers. <i>Angewandte Chemie</i> , 2002 , 114, 1991	3.6	15
41	A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins. <i>Scientific Data</i> , 2018 , 5, 180226	8.2	15
40	A Greek Cylindrospermopsis raciborskii strain: Missing link in tropic invader\$ phylogeography tale. <i>Harmful Algae</i> , 2018 , 80, 96-106	5.3	15
39	Leptothoe, a new genus of marine cyanobacteria (Synechococcales) and three new species associated with sponges from the Aegean Sea. <i>Journal of Phycology</i> , 2019 , 55, 882-897	3	14
38	New microginins from cyanobacteria of Greek freshwaters. <i>Chemosphere</i> , 2020 , 248, 125961	8.4	14
37	Photocatalytic Degradation of Lindane in Aqueous Solution. <i>Pest Management Science</i> , 1997 , 50, 171-1	74	14
36	Photocatalytic mineralization of chlorinated organic pollutants in water by polyoxometallates. Determination of intermediates and final degradation products. <i>Research on Chemical Intermediates</i> , 2000 , 26, 235-251	2.8	14
35	Photocatalytic processes by polyoxometalates. Splitting of water. The role of dioxygen. <i>Molecular Engineering</i> , 1993 , 3, 231-239		14
34	Organochlorine pesticides and triazines in the drinking water of Athens. <i>Bulletin of Environmental Contamination and Toxicology</i> , 1996 , 57, 250-7	2.7	13
33	Sources and Occurrence of Cyanotoxins Worldwide. <i>Environmental Pollution</i> , 2010 , 101-127	0	13
32	Membrane Lipidome Reorganization and Accumulation of Tissue DNA Lesions in Tumor-Bearing Mice: An Exploratory Study. <i>Cancers</i> , 2019 , 11,	6.6	11
31	Multi-electron reduction of Wells-Dawson polyoxometalate films onto metallic, semiconducting and dielectric substrates. <i>Physical Chemistry Chemical Physics</i> , 2018 , 21, 427-437	3.6	10
30	Diversity of cyanobacteria and the presence of cyanotoxins in the epilimnion of Lake Yerevan (Armenia). <i>Toxicon</i> , 2018 , 150, 28-38	2.8	9

29	Photocatalytic processes with tungsten oxygen anion clusters. <i>Frontiers in Bioscience - Landmark</i> , 2003 , 8, s813-25	2.8	9
28	Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 1911-4	16.4	9
27	Lessons from the Ulice Case 2017, 298-308		6
26	Determination of Acidic Pesticides in the Drinking Water of Greece Using Capillary Gas Chromatography-Mass Spectrometry. <i>Water, Air, and Soil Pollution</i> , 1998 , 104, 259-268	2.6	6
25	CHAPTER 1:Photocatalytic Degradation of Organic Contaminants in Water: Process Optimization and Degradation Pathways. <i>RSC Energy and Environment Series</i> , 2016 , 1-34	0.6	6
24	Kinetic and mechanistic investigation of water taste and odor compound 2-isopropyl-3-methoxy pyrazine degradation using UV-A/Chlorine process. <i>Science of the Total Environment</i> , 2020 , 732, 138404	10.2	5
23	Determination of Cyanotoxins by High-Performance Liquid Chromatography with Photodiode Array 2017 , 203-211		3
22	EMethylamino-L-alanine interferes with nitrogen assimilation in the cyanobacterium, non-BMAA producer, Synechococcus sp. TAU-MAC 0499. <i>Toxicon</i> , 2020 , 185, 147-155	2.8	3
21	Solid-Phase Extraction of Microcystins and Nodularin from Drinking Water 2017 , 354-357		2
20	Determination of Microcystins and Nodularin in Filtered and Drinking Water by LC-MS/MS 2017 , 372-37	8	2
19	Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer. <i>Limnology and Oceanography</i> , 2021 , 66, 4314	4.8	2
18	Cyanobacterial Toxins and Peptides in Lake Vegoritis, Greece. <i>Toxins</i> , 2021 , 13,	4.9	2
17	Taste and Odour Compounds Produced by Cyanobacteria 2017 , 196-201		1
16	Protein Phosphatase Inhibition Assays 2017 , 267-271		1
15	Determination of Anatoxin-a in Filtered and Drinking Water by LC-MS/MS 2017 , 408-412		1
14	Basic Validation Protocol for the Analysis of Cyanotoxins in Environmental Samples 2017 , 481-485		1
13	Fragmentation mass spectra dataset of linear cyanopeptides - microginins. <i>Data in Brief</i> , 2020 , 31, 1058	2 52	1
12	Transformation Products of Hazardous Cyanobacterial Metabolites in Water 2014 , 675-708		1

LIST OF PUBLICATIONS

11	Thermal and photochemical catalysis by polyoxometallates Regeneration of catalyst by dioxygen. <i>Studies in Surface Science and Catalysis</i> , 1991 , 66, 429-435	1.8	1
10	Determination of Geosmin and 2-Methylisoborneol in Water by HS-SPME-GC/MS 2017 , 469-474		O
9	Sublethal exposure to Microcystis aeruginosa extracts during embryonic development reduces aerobic swimming capacity in juvenile zebrafish <i>Aquatic Toxicology</i> , 2022 , 243, 106074	5.1	0
8	Liquid ChromatographyMass Spectrometry 2017 , 218-257		
7	Method Validation Guidelines for the Analysis of Cyanotoxins 2017 , 285-291		
6	Quantitative Screening of Microcystins and Nodularin in Water Samples with Commercially Available ELISA Kits 2017 , 390-392		
5	Quantitative Screening of Microcystins and Nodularin in Water Samples with Commercially Available PPIA Kits 2017 , 393-395		
4	Solid-Phase Extraction of Cylindrospermopsin from Filtered and Drinking Water 2017 , 396-398		
3	Determination of Cylindrospermopsin in Filtered and Drinking Water by LC-MS/MS 2017 , 399-404		
2	Solid-Phase Extraction of Anatoxin-a from Filtered and Drinking Water 2017 , 405-407		
1	Radiolytic degradation of 2-methylisoborneol and geosmin in water: Reactive radical species and transformation pathways. <i>Chemical Engineering Journal Advances</i> , 2021 , 8, 100196	3.6	