List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4155089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology, 2015, 13, 310-317.	13.6	1,612
2	Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 2013, 47, 957-995.	5.3	1,518
3	The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteriaÂand resistance genes – A review. Water Research, 2017, 123, 448-467.	5.3	400
4	Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater. Water Research, 2013, 47, 1875-1887.	5.3	377
5	Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environment International, 2015, 75, 117-135.	4.8	356
6	Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Science Advances, 2019, 5, eaau9124.	4.7	346
7	Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environment International, 2018, 115, 312-324.	4.8	341
8	Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environment International, 2020, 140, 105733.	4.8	338
9	Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Science of the Total Environment, 2019, 648, 1052-1081.	3.9	328
10	Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiology Reviews, 2014, 38, 761-778.	3.9	288
11	Assessing the Risk of Antibiotic Resistance Transmission from the Environment to Humans: Non-Direct Proportionality between Abundance and Risk. Trends in Microbiology, 2017, 25, 173-181.	3.5	285
12	Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environment International, 2018, 117, 132-138.	4.8	281
13	Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance. Environmental Science & Technology, 2017, 51, 13061-13069.	4.6	236
14	Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan-European survey of urban settings. Water Research, 2019, 162, 320-330.	5.3	231
15	Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity. Water Research, 2019, 159, 333-347.	5.3	222
16	Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiology Ecology, 2007, 60, 166-176.	1.3	213
17	Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater. Water Research, 2018, 135, 195-206.	5.3	197
18	Antibiotic resistance of enterococci and related bacteria in an urban wastewater treatment plant. FEMS Microbiology Ecology, 2006, 55, 322-329.	1.3	188

#	Article	IF	CITATIONS
19	Photocatalytic ozonation of urban wastewater and surface water using immobilized TiO2 with LEDs: Micropollutants, antibiotic resistance genes and estrogenic activity. Water Research, 2016, 94, 10-22.	5.3	185
20	Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants. Water Research, 2011, 45, 5599-5611.	5.3	179
21	Ozonation and UV254nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater. Journal of Hazardous Materials, 2017, 323, 434-441.	6.5	179
22	Antibiotic resistance in urban aquatic environments: can it be controlled?. Applied Microbiology and Biotechnology, 2016, 100, 1543-1557.	1.7	169
23	Biodegradation of sulfamethoxazole and other sulfonamides by Achromobacter denitrificans PR1. Journal of Hazardous Materials, 2014, 280, 741-749.	6.5	168
24	Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: Degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Research, 2012, 46, 5621-5634.	5.3	160
25	Diversity and Antibiotic Resistance Patterns of Sphingomonadaceae Isolates from Drinking Water. Applied and Environmental Microbiology, 2011, 77, 5697-5706.	1.4	159
26	Factors influencing antibiotic resistance burden in municipal wastewater treatment plants. Applied Microbiology and Biotechnology, 2010, 87, 1157-1166.	1.7	155
27	Heterogeneous photocatalysis using UVA-LEDs for the removal of antibiotics and antibiotic resistant bacteria from urban wastewater treatment plant effluents. Chemical Engineering Journal, 2019, 367, 304-313.	6.6	135
28	Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. Science of the Total Environment, 2012, 426, 366-374.	3.9	133
29	Insights into the relationship between antimicrobial residues and bacterial populations inÂa hospital-urban wastewater treatment plant system. Water Research, 2014, 54, 327-336.	5.3	117
30	Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: Removal or persistence of antibiotics and antibiotic resistance genes?. Science of the Total Environment, 2019, 652, 1051-1061.	3.9	115
31	Ubiquitous and persistent Proteobacteria and other Gram-negative bacteria in drinking water. Science of the Total Environment, 2017, 586, 1141-1149.	3.9	110
32	Antibiotic resistance in coagulase negative staphylococci isolated from wastewater and drinking water. Science of the Total Environment, 2009, 407, 3876-3882.	3.9	109
33	blaTEM and vanA as indicator genes of antibiotic resistance contamination in a hospital–urban wastewater treatment plant system. Journal of Global Antimicrobial Resistance, 2014, 2, 309-315.	0.9	109
34	Bacterial diversity from the source to the tap: a comparative study based on 16S rRNA gene-DGGE and culture-dependent methods. FEMS Microbiology Ecology, 2013, 83, 361-374.	1.3	104
35	Water and sanitation: an essential battlefront in the war on antimicrobial resistance. FEMS Microbiology Ecology, 2018, 94, .	1.3	104
36	Culture-dependent and culture-independent diversity surveys target different bacteria: a case study in a freshwater sample. Antonie Van Leeuwenhoek, 2011, 100, 245-257.	0.7	100

#	Article	IF	CITATIONS
37	Antibiotic Resistance Genes in the Human-Impacted Environment: A One Health Perspective. Pedosphere, 2019, 29, 273-282.	2.1	100
38	Vancomycin resistant enterococci: From the hospital effluent to the urban wastewater treatment plant. Science of the Total Environment, 2013, 450-451, 155-161.	3.9	99
39	Quinolone resistant Aeromonas spp. as carriers and potential tracers of acquired antibiotic resistance in hospital and municipal wastewater. Science of the Total Environment, 2016, 542, 665-671.	3.9	94
40	Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant. Environment International, 2018, 118, 179-188.	4.8	93
41	Gulosibacter molinativorax gen. nov., sp. nov., a molinate-degrading bacterium, and classification of â€ ⁻ Brevibacterium helvolum' DSM 20419 as Pseudoclavibacter helvolus gen. nov., sp. nov International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 783-789.	0.8	91
42	Differential patterns of antimicrobial resistance in population subsets of Escherichia coli isolated from waste- and surface waters. Science of the Total Environment, 2011, 409, 1017-1023.	3.9	83
43	Reusing Treated Wastewater: Consideration of the Safety Aspects Associated with Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes. Water (Switzerland), 2018, 10, 244.	1.2	83
44	Heterotrophic plate counts and the isolation of bacteria from mineral waters on selective and enrichment media. Journal of Applied Bacteriology, 1990, 69, 871-876.	1.1	78
45	Human health implications of clinically relevant bacteria in wastewater habitats. Environmental Science and Pollution Research, 2013, 20, 3550-3569.	2.7	78
46	Proteobacteria become predominant during regrowth after water disinfection. Science of the Total Environment, 2016, 573, 313-323.	3.9	77
47	Diversity of Bacterial Isolates from Commercial and Homemade Composts. Microbial Ecology, 2008, 55, 714-722.	1.4	76
48	Bottled mineral water as a potential source of antibiotic resistant bacteria. Water Research, 2012, 46, 3612-3622.	5.3	76
49	Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing. FEMS Microbiology Ecology, 2014, 87, 650-663.	1.3	72
50	High Throughput Analysis of Integron Gene Cassettes in Wastewater Environments. Environmental Science & Technology, 2016, 50, 11825-11836.	4.6	68
51	A novel pathway for mineralization of the thiocarbamate herbicide molinate by a defined bacterial mixed culture. Environmental Microbiology, 2003, 5, 944-953.	1.8	67
52	Comparative study of the microbial diversity of bulk paddy soil of two rice fields subjected to organic and conventional farming. Soil Biology and Biochemistry, 2011, 43, 115-125.	4.2	66
53	Investigating the impact of UV-C/H2O2 and sunlight/H2O2 on the removal of antibiotics, antibiotic resistance determinants and toxicity present in urban wastewater. Chemical Engineering Journal, 2020, 388, 124383.	6.6	64
54	Diversity and antibiotic resistance of Acinetobacter spp. in water from the source to the tap. Applied Microbiology and Biotechnology, 2013, 97, 329-340.	1.7	60

#	Article	IF	CITATIONS
55	Monitoring antibiotic resistance genes in wastewater environments: The challenges of filling a gap in the One-Health cycle. Journal of Hazardous Materials, 2022, 424, 127407.	6.5	60
56	Metagenomic analysis of an urban resistome before and after wastewater treatment. Scientific Reports, 2020, 10, 8174.	1.6	58
57	Multidrug resistance phenotypes are widespread over different bacterial taxonomic groups thriving in surface water. Science of the Total Environment, 2016, 563-564, 1-9.	3.9	56
58	A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants. Environment International, 2020, 144, 106035.	4.8	55
59	Bordetella bronchialis sp. nov., Bordetella flabilis sp. nov. and Bordetella sputigena sp. nov., isolated from human respiratory specimens, and reclassification of Achromobacter sediminum Zhang et al. 2014 as Verticia sediminum gen. nov., comb. nov International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3674-3682.	0.8	54
60	Insights on sulfamethoxazole bio-transformation by environmental Proteobacteria isolates. Journal of Hazardous Materials, 2018, 358, 310-318.	6.5	52
61	Metabolic and Genetic Diversity of Mesophilic and Thermophilic Bacteria Isolated from Composted Municipal Sludge on Poly-ε-caprolactones. Current Microbiology, 2004, 49, 407-414.	1.0	51
62	Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 267-273.	0.8	51
63	Removal of microorganisms and antibiotic resistance genes from treated urban wastewater: A comparison between aluminium sulphate and tannin coagulants. Water Research, 2019, 166, 115056.	5.3	50
64	Ciprofloxacin Resistance in Domestic Wastewater Treatment Plants. Water, Air, and Soil Pollution, 2010, 208, 335-343.	1.1	48
65	Assessment of copper and zinc salts as selectors of antibiotic resistance in Gram-negative bacteria. Science of the Total Environment, 2015, 530-531, 367-372.	3.9	48
66	Humibacter albus gen. nov., sp. nov., isolated from sewage sludge compost. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1014-1018.	0.8	46
67	Inter-laboratory calibration of quantitative analyses of antibiotic resistance genes. Journal of Environmental Chemical Engineering, 2020, 8, 102214.	3.3	45
68	Multidrug Resistance in Quinolone-Resistant Gram-Negative Bacteria Isolated from Hospital Effluent and the Municipal Wastewater Treatment Plant. Microbial Drug Resistance, 2016, 22, 155-163.	0.9	44
69	Tepidiphilus margaritifer gen. nov., sp. nov., isolated from a thermophilic aerobic digester. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 1405-1410.	0.8	43
70	Association of financial or professional conflict of interest to research outcomes on health risks or nutritional assessment studies of genetically modified products. Food Policy, 2011, 36, 197-203.	2.8	43
71	Acinetobacter rudis sp. nov., isolated from raw milk and raw wastewater. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2837-2843.	0.8	42
72	Treatment of cork boiling wastewater using chemical oxidation and biodegradation. Chemosphere, 2006, 64, 455-461.	4.2	41

#	Article	IF	CITATIONS
73	Gulbenkiania mobilis gen. nov., sp. nov., isolated from treated municipal wastewater. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1108-1112.	0.8	40
74	Genetic characterization of fluoroquinolone resistant Escherichia coli from urban streams and municipal and hospital effluents. FEMS Microbiology Ecology, 2015, 91, .	1.3	37
75	Preliminary feasibility study for the use of an adsorption/bio-regeneration system for molinate removal from effluents. Water Research, 2004, 38, 2677-2684.	5.3	36
76	Acetobacter sicerae sp. nov., isolated from cider and kefir, and identification of species of the genus Acetobacter by dnaK, groEL and rpoB sequence analysis. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2407-2415.	0.8	36
77	Quinoloneâ€resistant <scp><i>Escherichia coli</i> isolated from birds of prey in <scp>P</scp>ortugal are genetically distinct from those isolated from water environments and gulls in <scp>P</scp>ortugal, <scp>S</scp>pain and <scp>S</scp>weden. Environmental Microbiology, 2014, 16.995-1004</scp>	1.8	35
78	Molecular evidence of the close relatedness of clinical, gull and wastewater isolates of quinolone-resistant Escherichia coli. Journal of Global Antimicrobial Resistance, 2015, 3, 286-289.	0.9	35
79	Paenibacillus humicus sp. nov., isolated from poultry litter compost. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 2267-2271.	0.8	34
80	GES-5 among the β -lactamases detected in ubiquitous bacteria isolated from aquatic environment samples. FEMS Microbiology Letters, 2014, 351, 64-69.	0.7	34
81	Living with sulfonamides: a diverse range of mechanisms observed in bacteria. Applied Microbiology and Biotechnology, 2020, 104, 10389-10408.	1.7	33
82	Pseudosphingobacterium domesticum gen. nov., sp. nov., isolated from home-made compost. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1535-1538.	0.8	32
83	Comparison of ubiquitous antibiotic-resistant Enterobacteriaceae populations isolated from wastewaters, surface waters and drinking waters. Journal of Water and Health, 2012, 10, 1-10.	1.1	32
84	A case study of molinate application in a Portuguese rice field: herbicide dissipation and proposal of a clean-up methodology. Chemosphere, 2005, 59, 1059-1065.	4.2	31
85	Genotypic diversity and antibiotic resistance in Sphingomonadaceae isolated from hospital tap water. Science of the Total Environment, 2014, 466-467, 127-135.	3.9	31
86	Comparison of Culture- and Quantitative PCR-Based Indicators of Antibiotic Resistance in Wastewater, Recycled Water, and Tap Water. International Journal of Environmental Research and Public Health, 2019, 16, 4217.	1.2	31
87	Candidimonas nitroreducens gen. nov., sp. nov. and Candidimonas humi sp. nov., isolated from sewage sludge compost. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2238-2246.	0.8	29
88	Bacillus purgationiresistans sp. nov., isolated from a drinking-water treatment plant. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 71-77.	0.8	28
89	Fate of cefotaxime-resistant Enterobacteriaceae and ESBL-producers over a full-scale wastewater treatment process with UV disinfection. Science of the Total Environment, 2018, 639, 1028-1037.	3.9	28
90	Immobilised Cerium-Doped Zinc Oxide as a Photocatalyst for the Degradation of Antibiotics and the Inactivation of Antibiotic-Resistant Bacteria. Catalysts, 2019, 9, 222.	1.6	28

#	Article	IF	CITATIONS
91	Sphingobium vermicomposti sp. nov., isolated from vermicompost. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 3145-3149.	0.8	27
92	Pseudomonas thermotolerans sp. nov., a thermotolerant species of the genus Pseudomonas sensu stricto International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 2203-2209.	0.8	27
93	New insights into a bacterial metabolic and detoxifying association responsible for the mineralization of the thiocarbamate herbicide molinate. Microbiology (United Kingdom), 2008, 154, 1038-1046.	0.7	27
94	Shinella fusca sp. nov., isolated from domestic waste compost. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 144-148.	0.8	25
95	Neighbor urban wastewater treatment plants display distinct profiles of bacterial community and antibiotic resistance genes. Environmental Science and Pollution Research, 2019, 26, 11269-11278.	2.7	25
96	The risk of transmitting antibiotic resistance through endophytic bacteria. Trends in Plant Science, 2021, 26, 1213-1226.	4.3	25
97	Impact of disinfection processes on bacterial community in urban wastewater: Should we rethink microbial assessment methods?. Journal of Environmental Chemical Engineering, 2020, 8, 104393.	3.3	24
98	Caenibacterium thermophilum gen. nov., sp. nov., isolated from a thermophilic aerobic digester of municipal sludge. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 1375-1382.	0.8	23
99	Paenibacillus residui sp. nov., isolated from urban waste compost. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2415-2419.	0.8	23
100	Microbial degradation of the herbicide molinate by defined cultures and in the environment. Applied Microbiology and Biotechnology, 2013, 97, 10275-10291.	1.7	23
101	Microbacterium luticocti sp. nov., isolated from sewage sludge compost. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1700-1704.	0.8	21
102	Microbacterium invictum sp. nov., isolated from homemade compost. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 2036-2041.	0.8	21
103	Bacterial diversity and bioaugmentation in floodwater of a paddy field in the presence of the herbicide molinate. Biodegradation, 2011, 22, 445-461.	1.5	20
104	Molinate biodegradation in soils: natural attenuation versus bioaugmentation. Applied Microbiology and Biotechnology, 2013, 97, 2691-2700.	1.7	19
105	Photoinactivation of various antibiotic resistant strains of Escherichia coli using a paint coat. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 251, 148-153.	2.0	19
106	The Polar Lipid and Fatty Acid Composition of Rhodothermus Strains. Systematic and Applied Microbiology, 1992, 15, 59-62.	1.2	18
107	<i>Betaproteobacteria</i> are predominant in drinking water: are there reasons for concern?. Critical Reviews in Microbiology, 2019, 45, 649-667.	2.7	18
108	Carbapenem-resistant bacteria over a wastewater treatment process: Carbapenem-resistant Enterobacteriaceae in untreated wastewater and intrinsically-resistant bacteria in final effluent. Science of the Total Environment, 2021, 782, 146892.	3.9	18

#	Article	IF	CITATIONS
109	Reduction of antibiotic resistance determinants in urban wastewater by ozone: Emphasis on the impact of wastewater matrix towards the inactivation kinetics, toxicity and bacterial regrowth. Journal of Hazardous Materials, 2021, 420, 126527.	6.5	16
110	A rationale for the high limits of quantification of antibiotic resistance genes in soil. Environmental Pollution, 2018, 243, 1696-1703.	3.7	14
111	Genetic Characterization of Methicillin-Resistant Staphylococcus aureus Isolates from Human Bloodstream Infections: Detection of MLSB Resistance. Antibiotics, 2020, 9, 375.	1.5	14
112	Hydromonas duriensis gen. nov., sp. nov., isolated from freshwater. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 4134-4139.	0.8	14
113	High Frequency of the EMRSA-15 Clone (ST22-MRSA-IV) in Hospital Wastewater. Microorganisms, 2022, 10, 147.	1.6	14
114	Genotypic and phenotypic traits of blaCTX-M-carrying Escherichia coli strains from an UV-C-treated wastewater effluent. Water Research, 2020, 184, 116079.	5.3	13
115	Cell-based internal standard for qPCR determinations of antibiotic resistance indicators in environmental water samples. Ecological Indicators, 2020, 113, 106194.	2.6	13
116	Caenibacterium thermophilum is a later synonym of Schlegelella thermodepolymerans. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 1933-1935.	0.8	12
117	Genotypic analysis of Candida albicans isolates obtained from removable prosthesis wearers. Letters in Applied Microbiology, 2008, 46, 445-449.	1.0	12
118	Oryzisolibacter propanilivorax gen. nov., sp. nov., a propanil-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 3752-3758.	0.8	12
119	Third generation cephalosporin-resistant Klebsiella pneumoniae thriving in patients and in wastewater: what do they have in common?. BMC Genomics, 2022, 23, 72.	1.2	12
120	Molecular characterization of quinolone resistance mechanisms and extended-spectrum β-lactamase production in Escherichia coli isolated from dogs. Comparative Immunology, Microbiology and Infectious Diseases, 2015, 41, 43-48.	0.7	11
121	Relationships among bulk soil physicochemical, biochemical, and microbiological parameters in an organic alfalfa-rice rotation system. Environmental Science and Pollution Research, 2015, 22, 11690-11699.	2.7	11
122	The influence of the autochthonous wastewater microbiota and gene host on the fate of invasive antibiotic resistance genes. Science of the Total Environment, 2017, 575, 932-940.	3.9	11
123	Effect of copper and zinc as sulfate or nitrate salts on soil microbiome dynamics and bla-positive Pseudomonas aeruginosa survival. Journal of Hazardous Materials, 2021, 415, 125631.	6.5	11
124	Association between gentamicin resistance and stress tolerance in water isolates of Ralstonia pickettii and R. mannitolilytica. Folia Microbiologica, 2019, 64, 63-72.	1.1	10
125	A Pilot Study Combining Ultrafiltration with Ozonation for the Treatment of Secondary Urban Wastewater: Organic Micropollutants, Microbial Load and Biological Effects. Water (Switzerland), 2020, 12, 3458.	1.2	10
126	Environmental factors influencing molinate biodegradation by a two-member mixed culture in rice paddy field floodwater. International Biodeterioration and Biodegradation, 2012, 72, 52-58.	1.9	9

#	Article	IF	CITATIONS
127	Genetic variation in the conjugative plasmidome of a hospital effluent multidrug resistant Escherichia coli strain. Chemosphere, 2019, 220, 748-759.	4.2	8
128	Antibiotic Resistance in Waste Water and Surface Water and Human Health Implications. Handbook of Environmental Chemistry, 2011, , 173-212.	0.2	7
129	Identification of Emerging Hazards in Mussels by the Galician Emerging Food Safety Risks Network (RISEGAL). A First Approach. Foods, 2020, 9, 1641.	1.9	7
130	The balance between treatment efficiency and receptor quality determines wastewater impacts on the dissemination of antibiotic resistance. Journal of Hazardous Materials, 2022, 434, 128933.	6.5	6
131	Framework for establishing regulatory guidelines to control antibiotic resistance in treated effluents. Critical Reviews in Environmental Science and Technology, 2023, 53, 754-779.	6.6	6
132	Antibiotic resistance in wastewater: origins, fate, and risks. Pravention Und Gesundheitsforderung, 2014, 9, 180-184.	1.5	5
133	Irrigation with Treated Wastewater: Potential Impacts on Microbial Function and Diversity in Agricultural Soils. Handbook of Environmental Chemistry, 2015, , 105-128.	0.2	5
134	Antibiotic Resistance in the Environment: Expert Perspectives. Handbook of Environmental Chemistry, 2020, , 1-18.	0.2	5
135	Antibiotic resistance in wastewater, does the context matter? Poland and Portugal as a case study. Critical Reviews in Environmental Science and Technology, 2022, 52, 4194-4216.	6.6	5
136	Development and validation of novel PCR primers for identification of plasmid-mediated colistin resistance (mcr) genes in various environmental settings. Journal of Hazardous Materials, 2022, 425, 127936.	6.5	5
137	Draft Genome Sequences of Two Ralstonia pickettii Strains with Different Aminoglycoside Resistance Phenotypes. Genome Announcements, 2016, 4, .	0.8	4
138	A survey of the bacterial diversity in the cup filler of dental chair units. Brazilian Journal of Microbiology, 2011, 42, 959-963.	0.8	4
139	Characterization of bacterial communities from Masseiras, a unique Portuguese greenhouse agricultural system. Antonie Van Leeuwenhoek, 2017, 110, 665-676.	0.7	3
140	Persistence of wastewater antibiotic resistant bacteria and their genes in human fecal material. FEMS Microbiology Ecology, 2020, 96, .	1.3	3
141	Evolution of gentamicin and arsenite resistance acquisition in Ralstonia pickettii water isolates. Research in Microbiology, 2021, 172, 103790.	1.0	2
142	Polyphasic characterization of carbapenem-resistant Klebsiella pneumoniae clinical isolates suggests vertical transmission of the blaKPC-3 gene. PLoS ONE, 2021, 16, e0247058.	1.1	2
143	A survey of the bacterial diversity in the cup filler of dental chair units. Brazilian Journal of Microbiology, 2011, 42, 959-63.	0.8	2
144	Editorial introducing <i>Environmental Science: Advances</i> . Environmental Science Advances, 2022, 1, 7-8.	1.0	0