
Bharath Chandrasekaran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4154985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Auditory and visual category learning in musicians and nonmusicians Journal of Experimental Psychology: General, 2022, 151, 739-748.	2.1	7
2	Arousal States as a Key Source of Variability in Speech Perception and Learning. Languages, 2022, 7, 19.	0.6	4
3	Non-sensory Influences on Auditory Learning and Plasticity. JARO - Journal of the Association for Research in Otolaryngology, 2022, 23, 151-166.	1.8	1
4	Structural Connectivity of Human Inferior Colliculus Subdivisions Using in vivo and post mortem Diffusion MRI Tractography. Frontiers in Neuroscience, 2022, 16, 751595.	2.8	1
5	Principal component decomposition of acoustic and neural representations of time-varying pitch reveals adaptive efficient coding of speech covariation patterns. Brain and Language, 2022, 230, 105122.	1.6	1
6	The emergence of idiosyncratic patterns in the frequency-following response during the first year of life. JASA Express Letters, 2022, 2, 054401.	1.1	2
7	Continuous speech tracking in bilinguals reflects adaptation to both language and noise. Brain and Language, 2022, 230, 105128.	1.6	4
8	A Linear Superposition Model of Envelope and Frequency Following Responses May Help Identify Generators Based on Latency. Neurobiology of Language (Cambridge, Mass), 2022, 3, 441-468.	3.1	3
9	Sleep affects higher-level categorization of speech sounds, but not frequency encoding. Cortex, 2022, 154, 27-45.	2.4	2
10	Bayesian Semiparametric Longitudinal Drift-Diffusion Mixed Models for Tone Learning in Adults. Journal of the American Statistical Association, 2021, 116, 1114-1127.	3.1	7
11	A distributed dynamic brain network mediates linguistic tone representation and categorization. NeuroImage, 2021, 224, 117410.	4.2	8
12	Neural tracking of the speech envelope is differentially modulated by attention and language experience. Brain and Language, 2021, 213, 104891.	1.6	30
13	Comparing perceptual category learning across modalities in the same individuals. Psychonomic Bulletin and Review, 2021, 28, 898-909.	2.8	8
14	The neural processing of pitch accents in continuous speech. Neuropsychologia, 2021, 158, 107883.	1.6	6
15	Effects of Task Demands on Neural Correlates of Acoustic and Semantic Processing in Challenging Listening Conditions. Journal of Speech, Language, and Hearing Research, 2021, 64, 3697-3706.	1.6	5
16	Learning nonnative speech sounds changes local encoding in the adult human cortex. Proceedings of the United States of America, 2021, 118, .	7.1	7
17	Working memory relates to individual differences in speech category learning: Insights from computational modeling and pupillometry. Brain and Language, 2021, 222, 105010.	1.6	10
18	Neural dynamics underlying the acquisition of distinct auditory category structures. Neurolmage, 2021, 244, 118565.	4.2	6

#	Article	IF	CITATIONS
19	Emerging Native-Similar Neural Representations Underlie Non-Native Speech Category Learning Success. Neurobiology of Language (Cambridge, Mass), 2021, 2, 280-307.	3.1	8
20	Cortical Tracking of Speech in Delta Band Relates to Individual Differences in Speech in Noise Comprehension in Older Adults. Ear and Hearing, 2021, 42, 343-354.	2.1	17
21	Frequency-Following Responses to Speech Sounds Are Highly Conserved across Species and Contain Cortical Contributions. ENeuro, 2021, 8, ENEURO.0451-21.2021.	1.9	14
22	Non-invasive peripheral nerve stimulation selectively enhances speech category learning in adults. Npj Science of Learning, 2020, 5, 12.	2.8	28
23	Cortical Tracking of the Speech Envelope in Logopenic Variant Primary Progressive Aphasia. Frontiers in Human Neuroscience, 2020, 14, 597694.	2.0	10
24	Impact of depression on speech perception in noise. PLoS ONE, 2019, 14, e0220928.	2.5	6
25	Evolving perspectives on the sources of the frequency-following response. Nature Communications, 2019, 10, 5036.	12.8	116
26	Biometric identification of listener identity from frequency following responses to speech. Journal of Neural Engineering, 2019, 16, 056004.	3.5	13
27	Error patterns of native and non-native listeners' perception of speech in noise. Journal of the Acoustical Society of America, 2019, 145, EL129-EL135.	1.1	7
28	Interactive effects of linguistic abstraction and stimulus statistics in the online modulation of neural speech encoding. Attention, Perception, and Psychophysics, 2019, 81, 1020-1033.	1.3	4
29	The Role of the Human Auditory Corticostriatal Network in Speech Learning. Cerebral Cortex, 2019, 29, 4077-4089.	2.9	27
30	Machine Learning Approaches to Analyze Speech-Evoked Neurophysiological Responses. Journal of Speech, Language, and Hearing Research, 2019, 62, 587-601.	1.6	31
31	Functional Logistic Mixed-Effects Models for Learning Curves From Longitudinal Binary Data. Journal of Speech, Language, and Hearing Research, 2019, 62, 543-553.	1.6	1
32	The Effect of Talker and Listener Depressive Symptoms on Speech Intelligibility. Journal of Speech, Language, and Hearing Research, 2019, 62, 4269-4281.	1.6	3
33	Training-induced brain activation and functional connectivity differentiate multi-talker and single-talker speech training. Neurobiology of Learning and Memory, 2018, 151, 1-9.	1.9	11
34	Better late than never (or early): Music training in late childhood is associated with enhanced decision-making. Psychology of Music, 2018, 46, 734-748.	1.6	4
35	Task-General and Acoustic-Invariant Neural Representation of Speech Categories in the Human Brain. Cerebral Cortex, 2018, 28, 3241-3254.	2.9	50
36	Taking Attention Away from the Auditory Modality: Context-dependent Effects on Early Sensory Encoding of Speech. Neuroscience, 2018, 384, 64-75.	2.3	21

#	Article	IF	CITATIONS
37	Tracing the Trajectory of Sensory Plasticity across Different Stages of Speech Learning in Adulthood. Current Biology, 2018, 28, 1419-1427.e4.	3.9	55
38	Context-dependent plasticity in the subcortical encoding of linguistic pitch patterns. Journal of Neurophysiology, 2017, 117, 594-603.	1.8	14
39	The Downside of Greater Lexical Influences: Selectively Poorer Speech Perception in Noise. Journal of Speech, Language, and Hearing Research, 2017, 60, 1662-1673.	1.6	12
40	Stability and plasticity in neural encoding of linguistically relevant pitch patterns. Journal of Neurophysiology, 2017, 117, 1409-1424.	1.8	18
41	Audiovisual sentence recognition not predicted by susceptibility to the McGurk effect. Attention, Perception, and Psychophysics, 2017, 79, 396-403.	1.3	44
42	Vowel decoding from singleâ€trial speechâ€evoked electrophysiological responses: A featureâ€based machine learning approach. Brain and Behavior, 2017, 7, e00665.	2.2	32
43	Hidden Markov modeling of frequency-following responses to Mandarin lexical tones. Journal of Neuroscience Methods, 2017, 291, 101-112.	2.5	23
44	Autonomic Nervous System Responses During Perception of Masked Speech may Reflect Constructs other than Subjective Listening Effort. Frontiers in Psychology, 2016, 7, 263.	2.1	26
45	Performance pressure enhances speech learning. Applied Psycholinguistics, 2016, 37, 1369-1396.	1.1	10
46	Auditory categories with separable decision boundaries are learned faster with full feedback than with minimal feedback. Journal of the Acoustical Society of America, 2016, 140, 1332-1335.	1.1	19
47	Effect of explicit dimensional instruction on speech category learning. Attention, Perception, and Psychophysics, 2016, 78, 566-582.	1.3	26
48	The Role of Corticostriatal Systems in Speech Category Learning. Cerebral Cortex, 2016, 26, 1409-1420.	2.9	54
49	Resting-state low-frequency fluctuations reflect individual differences in spoken language learning. Cortex, 2016, 76, 63-78.	2.4	43
50	The role of age and executive function in auditory category learning. Journal of Experimental Child Psychology, 2016, 142, 48-65.	1.4	25
51	Audio-Visual and Meaningful Semantic Context Enhancements in Older and Younger Adults. PLoS ONE, 2016, 11, e0152773.	2.5	18
52	Effect of Simultaneous Bilingualism on Speech Intelligibility across Different Masker Types, Modalities, and Signal-to-Noise Ratios in School-Age Children. PLoS ONE, 2016, 11, e0168048.	2.5	27
53	Enhanced cognitive and perceptual processing: a computational basis for the musician advantage in speech learning. Frontiers in Psychology, 2015, 6, 682.	2.1	18
54	Enhanced Procedural Learning of Speech Sound Categories in a Genetic Variant of <i>FOXP2</i> . Journal of Neuroscience, 2015, 35, 7808-7812.	3.6	38

#	Article	IF	CITATIONS
55	Influence of depressive symptoms on speech perception in adverse listening conditions. Cognition and Emotion, 2015, 29, 900-909.	2.0	11
56	The C957T polymorphism in the dopamine receptor D ₂ gene modulates domain-general category learning. Journal of Neurophysiology, 2015, 113, 3281-3290.	1.8	8
57	Dopamine receptor D4 (DRD4) gene modulates the influence of informational masking on speech recognition. Neuropsychologia, 2015, 67, 121-131.	1.6	14
58	Nonnative Audiovisual Speech Perception in Noise: Dissociable Effects of the Speaker and Listener. PLoS ONE, 2014, 9, e114439.	2.5	9
59	The neural processing of foreign-accented speech and its relationship to listener bias. Frontiers in Human Neuroscience, 2014, 8, 768.	2.0	31
60	Enhancing Speech Intelligibility: Interactions Among Context, Modality, Speech Style, and Masker. Journal of Speech, Language, and Hearing Research, 2014, 57, 1908-1918.	1.6	65
61	Toward a dual-learning systems model of speech category learning. Frontiers in Psychology, 2014, 5, 825.	2.1	41
62	An Integrative Model of Subcortical Auditory Plasticity. Brain Topography, 2014, 27, 539-552.	1.8	58
63	Human brainstem plasticity: The interaction of stimulus probability and auditory learning. Neurobiology of Learning and Memory, 2014, 109, 82-93.	1.9	42
64	Recognition memory in noise for speech of varying intelligibility. Journal of the Acoustical Society of America, 2014, 135, 389-399.	1.1	35
65	Tests of a dual-system model of speech category learning. Bilingualism, 2014, 17, 709-728.	1.3	36
66	Elevated depressive symptoms enhance reflexive but not reflective auditory category learning. Cortex, 2014, 58, 186-198.	2.4	21
67	Dual-learning systems during speech category learning. Psychonomic Bulletin and Review, 2014, 21, 488-495.	2.8	69
68	The layering of auditory experiences in driving experience-dependent subcortical plasticity. Hearing Research, 2014, 311, 36-48.	2.0	27
69	Dual systems of speech category learning across the lifespan Psychology and Aging, 2013, 28, 1042-1056.	1.6	40
70	Reduced efficiency of audiovisual integration for nonnative speech. Journal of the Acoustical Society of America, 2013, 134, EL387-EL393.	1.1	51
71	Effect of musical training on static and dynamic measures of spectral-pattern discrimination. Proceedings of Meetings on Acoustics, 2013, 19, .	0.3	1
72	Effect of speech clarity on perception of interrupted meaningful and anomalous sentences. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0

#	Article	IF	CITATIONS
73	Tonotopic Organization in the Depth of Human Inferior Colliculus. Frontiers in Human Neuroscience, 2013, 7, 586.	2.0	33
74	Effects of phonological training on tone perception for English listeners. Proceedings of Meetings on Acoustics, 2013, , .	0.3	1
75	Processing speech of varying intelligibility. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
76	Human inferior colliculus activity relates to individual differences in spoken language learning. Journal of Neurophysiology, 2012, 107, 1325-1336.	1.8	98
77	The Derived Allele of ASPM Is Associated with Lexical Tone Perception. PLoS ONE, 2012, 7, e34243.	2.5	24
78	Effects of Speech Clarity on Recognition Memory for Spoken Sentences. PLoS ONE, 2012, 7, e43753.	2.5	57
79	Auditory brainstem measures predict reading and speech-in-noise perception in school-aged children. Behavioural Brain Research, 2011, 216, 597-605.	2.2	62
80	Neural Processing of What and Who Information in Speech. Journal of Cognitive Neuroscience, 2011, 23, 2690-2700.	2.3	41
81	White Matter Anisotropy in the Ventral Language Pathway Predicts Sound-to-Word Learning Success. Journal of Neuroscience, 2011, 31, 8780-8785.	3.6	104
82	The scalp-recorded brainstem response to speech: Neural origins and plasticity. Psychophysiology, 2010, 47, 236-246.	2.4	382
83	Music training for the development of auditory skills. Nature Reviews Neuroscience, 2010, 11, 599-605.	10.2	801
84	Corticalâ€evoked potentials reflect speechâ€inâ€noise perception in children. European Journal of Neuroscience, 2010, 32, 1407-1413.	2.6	40
85	Neural Timing Is Linked to Speech Perception in Noise. Journal of Neuroscience, 2010, 30, 4922-4926.	3.6	171
86	Individual variability in cue-weighting and lexical tone learning. Journal of the Acoustical Society of America, 2010, 128, 456-465.	1.1	155
87	Music, Noise-Exclusion, and Learning. Music Perception, 2010, 27, 297-306.	1.1	38
88	Brainstem correlates of speech-in-noise perception in children. Hearing Research, 2010, 270, 151-157.	2.0	91
89	Communication Disorders in Speakers of Tone Languages: Etiological Bases and Clinical Considerations. Seminars in Speech and Language, 2009, 30, 162-173.	0.8	26
90	Relative influence of musical and linguistic experience on early cortical processing of pitch contours. Brain and Language, 2009, 108, 1-9.	1.6	145

#	Article	IF	CITATIONS
91	Context-Dependent Encoding in the Human Auditory Brainstem Relates to Hearing Speech in Noise: Implications for Developmental Dyslexia. Neuron, 2009, 64, 311-319.	8.1	228
92	Sensory Processing of Linguistic Pitch as Reflected by the Mismatch Negativity. Ear and Hearing, 2009, 30, 552-558.	2.1	33
93	A case of impaired verbalization but preserved gesticulation of motion events. Cognitive Neuropsychology, 2007, 24, 70-114.	1.1	22
94	Experience-dependent neural plasticity is sensitive to shape of pitch contours. NeuroReport, 2007, 18, 1963-1967.	1.2	47
95	Mismatch negativity to pitch contours is influenced by language experience. Brain Research, 2007, 1128, 148-156.	2.2	142
96	Neuroplasticity in the processing of pitch dimensions: a multidimensional scaling analysis of the mismatch negativity. Restorative Neurology and Neuroscience, 2007, 25, 195-210.	0.7	53
97	Effects of Increasing Sound Pressure Level on Lip and Jaw Movement Parameters and Consistency in Young Adults. Journal of Speech, Language, and Hearing Research, 2006, 49, 1368-1379.	1.6	36
98	Changes to respiratory mechanisms during speech as a result of different cues to increase loudness. Journal of Applied Physiology, 2005, 98, 2177-2184.	2.5	48