
## François Rebaudo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4154045/publications.pdf Version: 2024-02-01



9.5

20

| #  | Article                                                                                                                                                                                                                           | IF               | CITATIONS       |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|
| 1  | Modeling Temperature-Dependent Development Rate in Insects and Implications of Experimental Design.<br>Environmental Entomology, 2022, 51, 132-144.                                                                               | 1.4              | 4               |
| 2  | The Effect of Diet Interacting With Temperature on the Development Rate of a Noctuidae Quinoa Pest.<br>Environmental Entomology, 2021, 50, 685-691.                                                                               | 1.4              | 2               |
| 3  | Impact of an Exotic Invasive Pest, Spodoptera frugiperda (Lepidoptera: Noctuidae), on Resident<br>Communities of Pest and Natural Enemies in Maize Fields in Kenya. Agronomy, 2021, 11, 1074.                                     | 3.0              | 14              |
| 4  | Measuring ontogenetic shifts in centralâ€place foragers: A case study with honeybees. Journal of<br>Animal Ecology, 2020, 89, 1860-1871.                                                                                          | 2.8              | 9               |
| 5  | Influence of Temperature on the Interaction for Resource Utilization between Fall Armyworm,<br>Spodoptera frugiperda (Lepidoptera: Noctuidae), and a Community of Lepidopteran Maize Stemborers<br>Larvae. Insects, 2020, 11, 73. | 2.2              | 17              |
| 6  | Competing Vegetation Structure Indices for Estimating Spatial Constrains in Carabid Abundance<br>Patterns in Chinese Grasslands Reveal Complex Scale and Habitat Patterns. Insects, 2020, 11, 249.                                | 2.2              | 8               |
| 7  | Light and dark rhythms of pupal eclosion and egg hatching in tropical stem borers' moths.<br>Phytoparasitica, 2020, 48, 415-425.                                                                                                  | 1.2              | Ο               |
| 8  | Carry-Over Niches for Lepidopteran Maize Stemborers and Associated Parasitoids during Non-Cropping Season. Insects, 2019, 10, 191.                                                                                                | 2.2              | 8               |
| 9  | Low-cost automatic temperature monitoring system with alerts for laboratory rearing units.<br>MethodsX, 2019, 6, 2127-2133.                                                                                                       | 1.6              | 5               |
| 10 | Carabid community structure in northern China grassland ecosystems: Effects of local habitat on species richness, species composition and functional diversity. PeerJ, 2019, 6, e6197.                                            | 2.0              | 24              |
| 11 | Modelling temperatureâ€dependent development rate and phenology in arthropods: The<br><scp>devRate</scp> package for <scp>r</scp> . Methods in Ecology and Evolution, 2018, 9, 1144-1150.                                         | 5.2              | 40              |
| 12 | Thermal pace-of-life strategies improve phenological predictions in ectotherms. Scientific Reports, 2018, 8, 15891.                                                                                                               | 3.3              | 4               |
| 13 | Modeling temperatureâ€dependent development rate and phenology in insects: review of major<br>developments, challenges, and future directions. Entomologia Experimentalis Et Applicata, 2018, 166,<br>607-617.                    | 1.4              | 102             |
| 14 | Relationship between temperature and development rate of Copitarsia incommoda (Lepidoptera:) Tj ETQq0 0 0                                                                                                                         | rgBT /Ove<br>1.2 | erloçk 10 Tf 50 |
| 15 | Does heterogeneity in crop canopy microclimates matter for pests? Evidence from aerial high-resolution thermography. Agriculture, Ecosystems and Environment, 2017, 246, 124-133.                                                 | 5.3              | 18              |
| 16 | Market access and community size influence pastoral management of native and exotic livestock<br>species: A case study in communities of the Cordillera Real in Bolivia's high Andean wetlands. PLoS<br>ONE, 2017, 12, e0189409.  | 2.5              | 25              |
| 17 | Microclimate Data Improve Predictions of Insect Abundance Models Based on Calibrated Spatiotemporal Temperatures. Frontiers in Physiology, 2016, 7, 139.                                                                          | 2.8              | 36              |

<sup>18</sup> Direct and indirect effects of glaciers on aquatic biodiversity in high Andean peatlands. Global Change Biology, 2016, 22, 3196-3205.

François Rebaudo

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A toolbox for studying thermal heterogeneity across spatial scales: from unmanned aerial vehicle<br>imagery toÂlandscape metrics. Methods in Ecology and Evolution, 2016, 7, 437-446.                                                                 | 5.2 | 63        |
| 20 | Genetic variation in aggregation behaviour and interacting phenotypes in <i>Drosophila</i> .<br>Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152967.                                                                         | 2.6 | 26        |
| 21 | Logiques paysannes, production agricole et lutte contre les ravageurs des cultures à Salcedo dans<br>les Andes équatoriennesÂ: stratégies individuelles ou collectivesÂ?. VertigO: La Revue Electronique En<br>Sciences De L'environnement, 2016, , . | 0.1 | 6         |
| 22 | Adaptive management in crop pest control in the face of climate variability: an agent-based modeling approach. Ecology and Society, 2015, 20, .                                                                                                       | 2.3 | 11        |
| 23 | Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming<br>tropical Andes. Global Change Biology, 2015, 21, 82-96.                                                                                       | 9.5 | 21        |
| 24 | Simulating Population Genetics of Pathogen Vectors in Changing Landscapes: Guidelines and Application with Triatoma brasiliensis. PLoS Neglected Tropical Diseases, 2014, 8, e3068.                                                                   | 3.0 | 6         |
| 25 | Obstacles to integrated pest management adoption in developing countries. Proceedings of the<br>National Academy of Sciences of the United States of America, 2014, 111, 3889-3894.                                                                   | 7.1 | 199       |
| 26 | Agent-Based Models and Integrated Pest Management Diffusion in Small Scale Farmer Communities. , 2014, , 367-383.                                                                                                                                     |     | 2         |
| 27 | Responses of different geographic populations of two potato tuber moth species to genetic variants<br>of <i><scp>P</scp>hthorimaea operculella granulovirus</i> . Entomologia Experimentalis Et Applicata,<br>2013, 149, 138-147.                     | 1.4 | 3         |
| 28 | Development of a viral biopesticide for the control of the Guatemala potato tuber moth Tecia solanivora. Journal of Invertebrate Pathology, 2013, 112, 184-191.                                                                                       | 3.2 | 28        |
| 29 | Sim <scp>A</scp> dapt: an individualâ€based genetic model for simulating landscape management impacts<br>on populations. Methods in Ecology and Evolution, 2013, 4, 595-600.                                                                          | 5.2 | 32        |
| 30 | An agent-based modeling framework for integrated pest management dissemination programs.<br>Environmental Modelling and Software, 2013, 45, 141-149.                                                                                                  | 4.5 | 46        |
| 31 | Modeling invasive species spread in complex landscapes: the case of potato moth in Ecuador.<br>Landscape Ecology, 2011, 26, 1447-1461.                                                                                                                | 4.2 | 43        |
| 32 | Coupled Information Diffusion–Pest Dynamics Models Predict Delayed Benefits of Farmer Cooperation<br>in Pest Management Programs. PLoS Computational Biology, 2011, 7, e1002222.                                                                      | 3.2 | 40        |
| 33 | Agent-Based Modeling of Human-Induced Spread of Invasive Species in Agricultural Landscapes:<br>Insights from the Potato Moth in Ecuador. Jasss, 2011, 14, .                                                                                          | 1.8 | 22        |
| 34 | Community-Based Participatory Research Helps Farmers and Scientists to Manage Invasive Pests in the<br>Ecuadorian Andes. Ambio, 2010, 39, 325-335.                                                                                                    | 5.5 | 40        |