## **Raymond J Deshaies**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4154019/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Targeted protein degradation: from small molecules to complex organelles—a Keystone Symposia<br>report. Annals of the New York Academy of Sciences, 2022, 1510, 79-99.                                                                            | 1.8  | 5         |
| 2  | A covalent p97/VCP ATPase inhibitor can overcome resistance to CB-5083 and NMS-873 in colorectal cancer cells. European Journal of Medicinal Chemistry, 2021, 213, 113148.                                                                        | 2.6  | 15        |
| 3  | In-depth proteomic analysis of proteasome inhibitors bortezomib, carfilzomib and MG132 reveals that<br>mortality factor 4-like 1 (MORF4L1) protein ubiquitylation is negatively impacted. Journal of<br>Proteomics, 2021, 241, 104197.            | 1.2  | 10        |
| 4  | Assembly and Regulation of CRL Ubiquitin Ligases. Advances in Experimental Medicine and Biology, 2020, 1217, 33-46.                                                                                                                               | 0.8  | 43        |
| 5  | Harnessing the Power of Proteolysis for Targeted Protein Inactivation. Molecular Cell, 2020, 77, 446-460.                                                                                                                                         | 4.5  | 140       |
| 6  | PIKES Analysis Reveals Response to Degraders and Key Regulatory Mechanisms of the CRL4 Network.<br>Molecular Cell, 2020, 77, 1092-1106.e9.                                                                                                        | 4.5  | 56        |
| 7  | Ubiquitin-dependent proteasomal degradation of AMPK gamma subunit by Cereblon inhibits AMPK<br>activity. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118729.                                                             | 1.9  | 16        |
| 8  | Multispecific drugs herald a new era of biopharmaceutical innovation. Nature, 2020, 580, 329-338.                                                                                                                                                 | 13.7 | 166       |
| 9  | Transfer of ubiquitin protein caught in the act. Nature, 2020, 578, 372-373.                                                                                                                                                                      | 13.7 | 5         |
| 10 | Multisystem Proteinopathy Mutations in VCP/p97 Increase NPLOC4·UFD1L Binding and Substrate<br>Processing. Structure, 2019, 27, 1820-1829.e4.                                                                                                      | 1.6  | 51        |
| 11 | Cand1-Mediated Adaptive Exchange Mechanism Enables Variation in F-Box Protein Expression.<br>Molecular Cell, 2018, 69, 773-786.e6.                                                                                                                | 4.5  | 84        |
| 12 | Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes. Nature, 2018, 557, 446-451.                                                                                                                               | 13.7 | 122       |
| 13 | Increased proteasomal activity supports photoreceptor survival in inherited retinal degeneration.<br>Nature Communications, 2018, 9, 1738.                                                                                                        | 5.8  | 65        |
| 14 | Epidithiodiketopiperazines Inhibit Protein Degradation by Targeting Proteasome Deubiquitinase Rpn11.<br>Cell Chemical Biology, 2018, 25, 1350-1358.e9.                                                                                            | 2.5  | 30        |
| 15 | Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nature Chemical Biology, 2017, 13, 486-493.                                                                                                                         | 3.9  | 117       |
| 16 | Discovery of an Inhibitor of the Proteasome Subunit Rpn11. Journal of Medicinal Chemistry, 2017, 60, 1343-1361.                                                                                                                                   | 2.9  | 61        |
| 17 | Thiolutin is a zinc chelator that inhibits the Rpn11 and other JAMM metalloproteases. Nature Chemical Biology, 2017, 13, 709-714.                                                                                                                 | 3.9  | 95        |
| 18 | Ubiquitin- and ATP-dependent unfoldase activity of P97/VCP•NPLOC4•UFD1L is enhanced by a mutation that causes multisystem proteinopathy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4380-E4388. | 3.3  | 136       |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | p97/VCP promotes degradation of CRBN substrate glutamine synthetase and neosubstrates.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3565-3571.      | 3.3  | 68        |
| 20 | The pseudophosphatase <scp>STYX</scp> targets the Fâ€box of <scp>FBXW</scp> 7 and inhibits <scp>SCF</scp> <sup>FBXW7</sup> function. EMBO Journal, 2017, 36, 260-273.                                 | 3.5  | 26        |
| 21 | Composition and Regulation of the Cellular Repertoire of SCF Ubiquitin Ligases. Cell, 2017, 171, 1326-1339.e14.                                                                                       | 13.5 | 118       |
| 22 | Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature, 2017, 552, 194-199.                                                                                              | 13.7 | 516       |
| 23 | Structural Basis for the Inhibitory Effects of Ubistatins in the Ubiquitin-Proteasome Pathway.<br>Structure, 2017, 25, 1839-1855.e11.                                                                 | 1.6  | 15        |
| 24 | Ribosomal proteins produced in excess are degraded by the ubiquitin–proteasome system. Molecular<br>Biology of the Cell, 2016, 27, 2642-2652.                                                         | 0.9  | 105       |
| 25 | Nrf1 can be processed and activated in a proteasome-independent manner. Current Biology, 2016, 26, R834-R835.                                                                                         | 1.8  | 32        |
| 26 | Valosin-containing protein (VCP)–Adaptor Interactions are Exceptionally Dynamic and Subject to<br>Differential Modulation by a VCP Inhibitor. Molecular and Cellular Proteomics, 2016, 15, 2970-2986. | 2.5  | 42        |
| 27 | 2.3 Ã resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science, 2016, 351, 871-875.                                                                                  | 6.0  | 305       |
| 28 | Allosteric Indole Amide Inhibitors of p97: Identification of a Novel Probe of the Ubiquitin Pathway.<br>ACS Medicinal Chemistry Letters, 2016, 7, 182-187.                                            | 1.3  | 30        |
| 29 | Glutamine Triggers Acetylation-Dependent Degradation of Glutamine Synthetase via the Thalidomide<br>Receptor Cereblon. Molecular Cell, 2016, 61, 809-820.                                             | 4.5  | 132       |
| 30 | Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle. ELife, 2016, 5, .                                                        | 2.8  | 82        |
| 31 | A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins.<br>ELife, 2016, 5, .                                                                                 | 2.8  | 147       |
| 32 | Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell<br>lymphomas by doxycycline. Oncotarget, 2015, 6, 14796-14813.                                   | 0.8  | 42        |
| 33 | Prime time for PROTACs. Nature Chemical Biology, 2015, 11, 634-635.                                                                                                                                   | 3.9  | 132       |
| 34 | F-box Protein FBXL16 Binds PP2A-B55α and Regulates Differentiation of Embryonic Stem Cells along the FLK1+ Lineage. Molecular and Cellular Proteomics, 2014, 13, 780-791.                             | 2.5  | 22        |
| 35 | Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biology, 2014, 12, 94.                                                                                                   | 1.7  | 281       |
| 36 | Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nature Cell Biology, 2014, 16, 1227-1237.                                                    | 4.6  | 161       |

| #  | Article                                                                                                                                                                                                                            | lF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Degradation of the Deubiquitinating Enzyme USP33 Is Mediated by p97 and the Ubiquitin Ligase HERC2.<br>Journal of Biological Chemistry, 2014, 289, 19789-19798.                                                                    | 1.6  | 26        |
| 38 | Corralling a protein-degradation regulator. Nature, 2014, 512, 145-146.                                                                                                                                                            | 13.7 | 9         |
| 39 | Specific Inhibition of p97/VCP ATPase and Kinetic Analysis Demonstrate Interaction between D1 and D2<br>ATPase Domains. Journal of Molecular Biology, 2014, 426, 2886-2899.                                                        | 2.0  | 103       |
| 40 | p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition. ELife, 2014, 3, e01856.                                                                                    | 2.8  | 176       |
| 41 | Structure–Activity Relationship Study Reveals ML240 and ML241 as Potent and Selective Inhibitors of p97 ATPase. ChemMedChem, 2013, 8, 297-312.                                                                                     | 1.6  | 119       |
| 42 | Cand1 Promotes Assembly of New SCF Complexes through Dynamic Exchange of F Box Proteins. Cell, 2013, 153, 206-215.                                                                                                                 | 13.5 | 228       |
| 43 | Perturbations to the Ubiquitin Conjugate Proteome in Yeast Δubx Mutants Identify Ubx2 as a Regulator of Membrane Lipid Composition. Molecular and Cellular Proteomics, 2013, 12, 2791-2803.                                        | 2.5  | 27        |
| 44 | Activation of p107 by Fibroblast Growth Factor, Which Is Essential for Chondrocyte Cell Cycle Exit, Is<br>Mediated by the Protein Phosphatase 2A/B55α Holoenzyme. Molecular and Cellular Biology, 2013, 33,<br>3330-3342.          | 1.1  | 26        |
| 45 | Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. ELife, 2013, 2, e00308.                                                                                                                     | 2.8  | 203       |
| 46 | Protein Interaction Profiling of the p97 Adaptor UBXD1 Points to a Role for the Complex in<br>Modulating ERGIC-53 Trafficking. Molecular and Cellular Proteomics, 2012, 11, M111.016444.                                           | 2.5  | 31        |
| 47 | NEDD8 links cullin-RING ubiquitin ligase function to the p97 pathway. Nature Structural and<br>Molecular Biology, 2012, 19, 511-516.                                                                                               | 3.6  | 74        |
| 48 | Deconjugation of Nedd8 from Cul1 Is Directly Regulated by Skp1-F-box and Substrate, and the COP9<br>Signalosome Inhibits Deneddylated SCF by a Noncatalytic Mechanism. Journal of Biological Chemistry,<br>2012, 287, 29679-29689. | 1.6  | 110       |
| 49 | Click Chemistry Facilitates Formation of Reporter Ions and Simplified Synthesis of Amine-Reactive<br>Multiplexed Isobaric Tags for Protein Quantification. Journal of the American Chemical Society, 2012,<br>134, 2672-2680.      | 6.6  | 30        |
| 50 | Designer Reagents for Mass Spectrometry-Based Proteomics: Clickable Cross-Linkers for Elucidation of Protein Structures and Interactions. Analytical Chemistry, 2012, 84, 2662-2669.                                               | 3.2  | 41        |
| 51 | Development of p97 AAA ATPase inhibitors. Autophagy, 2011, 7, 1091-1092.                                                                                                                                                           | 4.3  | 48        |
| 52 | Cdc48/p97 Mediates UV-Dependent Turnover of RNA Pol II. Molecular Cell, 2011, 41, 82-92.                                                                                                                                           | 4.5  | 176       |
| 53 | Essential Role for Ubiquitin-Ubiquitin-Conjugating Enzyme Interaction in Ubiquitin Discharge from<br>Cdc34 to Substrate. Molecular Cell, 2011, 42, 75-83.                                                                          | 4.5  | 108       |
| 54 | The TFIIH Subunit Tfb3 Regulates Cullin Neddylation. Molecular Cell, 2011, 43, 488-495.                                                                                                                                            | 4.5  | 39        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein<br>Ddi1. BMC Biology, 2011, 9, 33.                                                                                                  | 1.7  | 62        |
| 56 | Quantitative Cell-based Protein Degradation Assays to Identify and Classify Drugs That Target the Ubiquitin-Proteasome System. Journal of Biological Chemistry, 2011, 286, 16546-16554.                                               | 1.6  | 55        |
| 57 | The Steady-State Repertoire of Human SCF Ubiquitin Ligase Complexes Does Not Require Ongoing Nedd8<br>Conjugation. Molecular and Cellular Proteomics, 2011, 10, M110.006460.                                                          | 2.5  | 54        |
| 58 | Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance<br>pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108,<br>4834-4839.           | 3.3  | 281       |
| 59 | Combined chemical and genetic approach to inhibit proteolysis by the proteasome. Yeast, 2010, 27, 965-974.                                                                                                                            | 0.8  | 51        |
| 60 | Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3<br>ubiquitin ligase. Nature Biotechnology, 2010, 28, 738-742.                                                                 | 9.4  | 132       |
| 61 | Control of Cullin-Ring Ubiquitin Ligase Activity by Nedd8. Sub-Cellular Biochemistry, 2010, 54, 41-56.                                                                                                                                | 1.0  | 85        |
| 62 | Physiologically relevant and portable tandem ubiquitin-binding domain stabilizes polyubiquitylated<br>proteins. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107,<br>19796-19801.           | 3.3  | 21        |
| 63 | Transcription Factor Nrf1 Mediates the Proteasome Recovery Pathway after Proteasome Inhibition in<br>Mammalian Cells. Molecular Cell, 2010, 38, 17-28.                                                                                | 4.5  | 426       |
| 64 | Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving<br>stem cell marker Nanog. Proceedings of the National Academy of Sciences of the United States of<br>America, 2009, 106, 1548-1553. | 3.3  | 210       |
| 65 | The Acidic Tail of the Cdc34 Ubiquitin-conjugating Enzyme Functions in Both Binding to and Catalysis with Ubiquitin Ligase SCFCdc4. Journal of Biological Chemistry, 2009, 284, 36012-36023.                                          | 1.6  | 31        |
| 66 | Dbf2–Mob1 drives relocalization of protein phosphatase Cdc14 to the cytoplasm during exit from mitosis. Journal of Cell Biology, 2009, 184, 527-539.                                                                                  | 2.3  | 96        |
| 67 | Gal4 turnover and transcription activation. Nature, 2009, 461, E7-E7.                                                                                                                                                                 | 13.7 | 27        |
| 68 | Detection of sequential polyubiquitylation on a millisecond timescale. Nature, 2009, 462, 615-619.                                                                                                                                    | 13.7 | 189       |
| 69 | Fresh target for cancer therapy. Nature, 2009, 458, 709-710.                                                                                                                                                                          | 13.7 | 11        |
| 70 | Chfr is linked to tumour metastasis through the downregulation of HDAC1. Nature Cell Biology, 2009, 11, 295-302.                                                                                                                      | 4.6  | 76        |
| 71 | RING Domain E3 Ubiquitin Ligases. Annual Review of Biochemistry, 2009, 78, 399-434.                                                                                                                                                   | 5.0  | 2,180     |
| 72 | Rapid E2-E3 Assembly and Disassembly Enable Processive Ubiquitylation of Cullin-RING Ubiquitin Ligase Substrates. Cell, 2009, 139, 957-968.                                                                                           | 13.5 | 178       |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Components of the ubiquitin-proteasome pathway compete for surfaces on Rad23 family proteins. BMC<br>Biochemistry, 2008, 9, 4.                                                                                     | 4.4  | 24        |
| 74 | Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene, 2008, 27, 7201-7211.                                                                               | 2.6  | 163       |
| 75 | Mutations in the Hydrophobic Core of Ubiquitin Differentially Affect Its Recognition by Receptor<br>Proteins. Journal of Molecular Biology, 2008, 375, 979-996.                                                    | 2.0  | 43        |
| 76 | Multimodal Activation of the Ubiquitin Ligase SCF by Nedd8 Conjugation. Molecular Cell, 2008, 32, 21-31.                                                                                                           | 4.5  | 342       |
| 77 | UBXD7 Binds Multiple Ubiquitin Ligases and Implicates p97 in HIF1α Turnover. Cell, 2008, 134, 804-816.                                                                                                             | 13.5 | 277       |
| 78 | A Conditional Yeast E1 Mutant Blocks the Ubiquitin–Proteasome Pathway and Reveals a Role for<br>Ubiquitin Conjugates in Targeting Rad23 to the Proteasome. Molecular Biology of the Cell, 2007, 18,<br>1953-1963.  | 0.9  | 50        |
| 79 | Quantitative Profiling of Ubiquitylated Proteins Reveals Proteasome Substrates and the Substrate<br>Repertoire Influenced by the Rpn10 Receptor Pathway. Molecular and Cellular Proteomics, 2007, 6,<br>1885-1895. | 2.5  | 90        |
| 80 | Evaluation of a Diffusion-Driven Mechanism for Substrate Ubiquitination by the SCF-Cdc34 Ubiquitin<br>Ligase Complex. Molecular Cell, 2006, 24, 523-534.                                                           | 4.5  | 20        |
| 81 | Structural Organization of the 19S Proteasome Lid: Insights from MS of Intact Complexes. PLoS<br>Biology, 2006, 4, e267.                                                                                           | 2.6  | 176       |
| 82 | Targeted silencing of Jab1/Csn5 in human cells downregulates SCF activity through reduction of F-box protein levels. , 2006, 7, 1.                                                                                 |      | 131       |
| 83 | Function and regulation of cullin–RING ubiquitin ligases. Nature Reviews Molecular Cell Biology,<br>2005, 6, 9-20.                                                                                                 | 16.1 | 1,890     |
| 84 | A putative stimulatory role for activator turnover in gene expression. Nature, 2005, 438, 113-116.                                                                                                                 | 13.7 | 172       |
| 85 | Analysis of Polyubiquitin Conjugates Reveals That the Rpn10 Substrate Receptor Contributes to the<br>Turnover of Multiple Proteasome Targets. Molecular and Cellular Proteomics, 2005, 4, 741-751.                 | 2.5  | 89        |
| 86 | In Vitro Reconstitution of SCF Substrate Ubiquitination with Purified Proteins. Methods in Enzymology, 2005, 398, 143-158.                                                                                         | 0.4  | 33        |
| 87 | Twoâ€Step Affinity Purification of Multiubiquitylated Proteins from Saccharomyces cerevisiae. Methods<br>in Enzymology, 2005, 399, 385-392.                                                                        | 0.4  | 24        |
| 88 | Mechanism of Lysine 48-Linked Ubiquitin-Chain Synthesis by the Cullin-RING Ubiquitin-Ligase Complex SCF-Cdc34. Cell, 2005, 123, 1107-1120.                                                                         | 13.5 | 249       |
| 89 | Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening. BMC Biochemistry, 2005, 6, 22.                                                                 | 4.4  | 89        |
| 90 | Phosphorylation by Cyclin B-Cdk Underlies Release of Mitotic Exit Activator Cdc14 from the Nucleolus. Science, 2004, 305, 516-519.                                                                                 | 6.0  | 159       |

| #   | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Applicability of Tandem Affinity Purification MudPIT to Pathway Proteomics in Yeast. Molecular and Cellular Proteomics, 2004, 3, 226-237.                                                                               | 2.5  | 130       |
| 92  | Ubistatins Inhibit Proteasome-Dependent Degradation by Binding the Ubiquitin Chain. Science, 2004, 306, 117-120.                                                                                                        | 6.0  | 183       |
| 93  | Chemical Genetic Control of Protein Levels:Â Selective in Vivo Targeted Degradation. Journal of the<br>American Chemical Society, 2004, 126, 3748-3754.                                                                 | 6.6  | 384       |
| 94  | Human De-Etiolated-1 Regulates c-Jun by Assembling a CUL4A Ubiquitin Ligase. Science, 2004, 303,<br>1371-1374.                                                                                                          | 6.0  | 349       |
| 95  | Multiubiquitin Chain Receptors Define a Layer of Substrate Selectivity in the Ubiquitin-Proteasome<br>System. Cell, 2004, 118, 99-110.                                                                                  | 13.5 | 410       |
| 96  | Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation. Nature Cell Biology, 2003, 5, 845-850.                                                                                                 | 4.6  | 166       |
| 97  | COP9 Signalosome. Cell, 2003, 114, 663-671.                                                                                                                                                                             | 13.5 | 375       |
| 98  | Context of Multiubiquitin Chain Attachment Influences the Rate of Sic1 Degradation. Molecular Cell, 2003, 11, 1435-1444.                                                                                                | 4.5  | 147       |
| 99  | Development of Protacs to Target Cancer-promoting Proteins for Ubiquitination and Degradation.<br>Molecular and Cellular Proteomics, 2003, 2, 1350-1358.                                                                | 2.5  | 302       |
| 100 | Redundant Degrons Ensure the Rapid Destruction of Sic1 at the G1/S Transition of the Budding Yeast Cell Cycle. Cell Cycle, 2003, 2, 409-410.                                                                            | 1.3  | 6         |
| 101 | JAMM: A Metalloprotease-Like Zinc Site in the Proteasome and Signalosome. PLoS Biology, 2003, 2, e2.                                                                                                                    | 2.6  | 194       |
| 102 | Redundant degrons ensure the rapid destruction of Sic1 at the G1/S transition of the budding yeast cell cycle. Cell Cycle, 2003, 2, 410-1.                                                                              | 1.3  | 4         |
| 103 | Mass Spectrometry-based Methods for Phosphorylation Site Mapping of Hyperphosphorylated<br>Proteins Applied to Net1, a Regulator of Exit from Mitosis in Yeast. Molecular and Cellular<br>Proteomics, 2002, 1, 186-196. | 2.5  | 67        |
| 104 | Charting the Protein Complexome in Yeast by Mass Spectrometry. Molecular and Cellular Proteomics, 2002, 1, 3-10.                                                                                                        | 2.5  | 36        |
| 105 | Mapping phosphorylation sites in proteins by mass spectrometry. Methods in Enzymology, 2002, 351, 279-296.                                                                                                              | 0.4  | 29        |
| 106 | Role of Rpn11 Metalloprotease in Deubiquitination and Degradation by the 26S Proteasome. Science, 2002, 298, 611-615.                                                                                                   | 6.0  | 919       |
| 107 | Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1. Science, 2002, 298, 608-611.                                                                                                       | 6.0  | 666       |
| 108 | Multiple telophase arrest bypassed (tab) mutants alleviate the essential requirement for Cdc15 in exit from mitosis in S. cerevisiae. BMC Genetics, 2002, 3, 4.                                                         | 2.7  | 36        |

| #   | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Cdc5 influences phosphorylation of Net1 and disassembly of the RENT complex. BMC Molecular Biology, 2002, 3, 3.                                                                                                             | 3.0  | 64        |
| 110 | Net1 Stimulates RNA Polymerase I Transcription and Regulates Nucleolar Structure Independently of Controlling Mitotic Exit. Molecular Cell, 2001, 8, 45-55.                                                                 | 4.5  | 116       |
| 111 | Selective Degradation of Ubiquitinated Sic1 by Purified 26S Proteasome Yields Active S Phase<br>Cyclin-Cdk. Molecular Cell, 2001, 8, 439-448.                                                                               | 4.5  | 93        |
| 112 | Multisite Phosphorylation and the Countdown to S Phase. Cell, 2001, 107, 819-822.                                                                                                                                           | 13.5 | 132       |
| 113 | A Multidimensional Electrospray MS-Based Approach to Phosphopeptide Mapping. Analytical Chemistry, 2001, 73, 393-404.                                                                                                       | 3.2  | 178       |
| 114 | The fission yeast COP9/signalosome is involved in cullin modification by ubiquitin-related Ned8p. BMC Biochemistry, 2001, 2, 7.                                                                                             | 4.4  | 101       |
| 115 | Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly. Nature Cell<br>Biology, 2001, 3, 384-391.                                                                                          | 4.6  | 242       |
| 116 | Protein kinase Cdc15 activates the Dbf2-Mob1 kinase complex. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7325-7330.                                                          | 3.3  | 182       |
| 117 | Interactions of the COP9 Signalosome with the E3 Ubiquitin Ligase SCFTIR1 in Mediating Auxin Response. Science, 2001, 292, 1379-1382.                                                                                       | 6.0  | 451       |
| 118 | Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8554-8559. | 3.3  | 1,482     |
| 119 | Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes and Development, 2001, 15, 1078-1092.                                                                                    | 2.7  | 272       |
| 120 | Promotion of NEDD8-CUL1 Conjugate Cleavage by COP9 Signalosome. Science, 2001, 292, 1382-1385.                                                                                                                              | 6.0  | 641       |
| 121 | Characterization of the Net1 Cell Cycle-dependent Regulator of the Cdc14 Phosphatase from Budding<br>Yeast. Journal of Biological Chemistry, 2001, 276, 21924-21931.                                                        | 1.6  | 65        |
| 122 | Skp1p and the F-Box Protein Rcy1p Form a Non-SCF Complex Involved in Recycling of the SNARE Snc1p in<br>Yeast. Molecular and Cellular Biology, 2001, 21, 3105-3117.                                                         | 1.1  | 157       |
| 123 | SEL-10 Is an Inhibitor of Notch Signaling That Targets Notch for Ubiquitin-Mediated Protein<br>Degradation. Molecular and Cellular Biology, 2001, 21, 7403-7415.                                                            | 1.1  | 299       |
| 124 | The Tem1 small GTPase controls actomyosin and septin dynamics during cytokinesis. Journal of Cell Science, 2001, 114, 1379-86.                                                                                              | 1.2  | 125       |
| 125 | COP1 patrols the night beat. Nature Cell Biology, 2000, 2, E102-E104.                                                                                                                                                       | 4.6  | 10        |
| 126 | Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4. EMBO Journal, 2000, 19, 6085-6097.                                                                                        | 3.5  | 108       |

| #   | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Proteasomal Proteomics: Identification of Nucleotide-sensitive Proteasome-interacting Proteins by<br>Mass Spectrometric Analysis of Affinity-purified Proteasomes. Molecular Biology of the Cell, 2000, 11,<br>3425-3439. | 0.9  | 518       |
| 128 | Cks1 Is Required for G 1 Cyclin–Cyclin-Dependent Kinase Activity in Budding Yeast. Molecular and<br>Cellular Biology, 2000, 20, 5858-5864.                                                                                | 1.1  | 64        |
| 129 | A Proteasome Howdunit. Cell, 2000, 101, 341-344.                                                                                                                                                                          | 13.5 | 129       |
| 130 | Exit from Mitosis Is Triggered by Tem1-Dependent Release of the Protein Phosphatase Cdc14 from Nucleolar RENT Complex. Cell, 1999, 97, 233-244.                                                                           | 13.5 | 684       |
| 131 | Net1, a Sir2-Associated Nucleolar Protein Required for rDNA Silencing and Nucleolar Integrity. Cell, 1999, 97, 245-256.                                                                                                   | 13.5 | 366       |
| 132 | Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes and Development, 1999, 13, 1614-1626.                                               | 2.7  | 372       |
| 133 | Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes and Development, 1999, 13, 2242-2257.                                                               | 2.7  | 185       |
| 134 | Human CUL1 forms an evolutionarily conserved ubiquitin ligase complex (SCF) with SKP1 and an F-box<br>protein. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95,<br>7451-7456.   | 3.3  | 125       |
| 135 | Cell Cycle Control by Ubiquitin-Dependent Proteolysis. , 1998, , 345-387.                                                                                                                                                 |      | 19        |
| 136 | Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p<br>in budding yeast. Genes and Development, 1997, 11, 3046-3060.                                                      | 2.7  | 191       |
| 137 | Cell-free ubiquitination of cell cycle regulators in budding yeast extracts. Methods in Enzymology, 1997, 283, 365-376.                                                                                                   | 0.4  | 8         |
| 138 | Phosphorylation of Sic1p by G1 Cdk Required for Its Degradation and Entry into S Phase. Science, 1997, 278, 455-460.                                                                                                      | 6.0  | 454       |
| 139 | Phosphorylation and proteolysis: partners in the regulation of cell division in budding yeast. Current<br>Opinion in Genetics and Development, 1997, 7, 7-16.                                                             | 1.5  | 98        |
| 140 | Phosphorylation and proteolysis: partners in the regulation of cell division in budding yeast. Current<br>Opinion in Genetics and Development, 1997, 7, 424.                                                              | 1.5  | 0         |
| 141 | A Complex of Cdc4p, Skp1p, and Cdc53p/Cullin Catalyzes Ubiquitination of the Phosphorylated CDK<br>Inhibitor Sic1p. Cell, 1997, 91, 221-230.                                                                              | 13.5 | 789       |
| 142 | How Proteolysis Drives the Cell Cycle. Science, 1996, 274, 1652-1659.                                                                                                                                                     | 6.0  | 1,249     |
| 143 | Cdc37 is required for association of the protein kinase Cdc28 with G1 and mitotic cyclins<br>Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4651-4655.                        | 3.3  | 136       |
| 144 | Make it or break it: the role of ubiquitin-dependent proteolysis in cellular regulation. Trends in Cell<br>Biology, 1995, 5, 428-434.                                                                                     | 3.6  | 82        |

| #   | Article                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Characterization of a Dominant Negative Mutant of the Cell Cycle Ubiquitin-conjugating Enzyme<br>Cdc34. Journal of Biological Chemistry, 1995, 270, 26209-26215. | 1.6  | 41        |
| 146 | The self-destructive personality of a cell cycle in transition. Current Opinion in Cell Biology, 1995, 7, 781-789.                                               | 2.6  | 62        |
| 147 | Exercising self-restraint: Discouraging illicit acts of S and M in eukaryotes. Cell, 1993, 74, 223-226.                                                          | 13.5 | 88        |
| 148 | Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature, 1991, 349, 806-808.  | 13.7 | 343       |
| 149 | Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast Journal of Cell Biology, 1989, 109, 2641-2652.    | 2.3  | 341       |
| 150 | SEC62 encodes a putative membrane protein required for protein translocation into the yeast endoplasmic reticulum Journal of Cell Biology, 1989, 109, 2653-2664. | 2.3  | 184       |
| 151 | Genetic dissection of the early stages of protein secretion in yeast. Trends in Genetics, 1989, 5, 87-93.                                                        | 2.9  | 37        |
| 152 | A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature, 1988, 332, 800-805.                      | 13.7 | 1,567     |
| 153 | The role of stress proteins in membrane biogenesis. Trends in Biochemical Sciences, 1988, 13, 384-388.                                                           | 3.7  | 119       |
| 154 | SEC11 is required for signal peptide processing and yeast cell growth Journal of Cell Biology, 1988, 106, 1035-1042.                                             | 2.3  | 192       |
| 155 | A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum Journal of Cell Biology, 1987, 105, 633-645. | 2.3  | 410       |
| 156 | Permeability of Chloroplast Envelopes to Mg2+. Plant Physiology, 1984, 74, 956-961.                                                                              | 2.3  | 17        |