
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4153854/publications.pdf Version: 2024-02-01

WELOINO DENC

#	Article	IF	CITATIONS
1	Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nature Communications, 2013, 4, 1960.	12.8	661
2	Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical Calculationsâ€. Journal of Physical Chemistry B, 2004, 108, 8614-8621.	2.6	586
3	Superhydrophobic conjugated microporous polymers for separation and adsorption. Energy and Environmental Science, 2011, 4, 2062.	30.8	560
4	Leadâ€Free, Airâ€Stable Allâ€Inorganic Cesium Bismuth Halide Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2017, 56, 12471-12475.	13.8	487
5	Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nature Communications, 2018, 9, 3376.	12.8	436
6	Lead-Free Direct Band Gap Double-Perovskite Nanocrystals with Bright Dual-Color Emission. Journal of the American Chemical Society, 2018, 140, 17001-17006.	13.7	399
7	Development of the ReaxFF Reactive Force Field for Describing Transition Metal Catalyzed Reactions, with Application to the Initial Stages of the Catalytic Formation of Carbon Nanotubes. Journal of Physical Chemistry A, 2005, 109, 493-499.	2.5	390
8	Thermal conductivity of diamond and related materials from molecular dynamics simulations. Journal of Chemical Physics, 2000, 113, 6888-6900.	3.0	307
9	New Alkali Doped Pillared Carbon Materials Designed to Achieve Practical Reversible Hydrogen Storage for Transportation. Physical Review Letters, 2004, 92, 166103.	7.8	307
10	First-Principles Investigation of Anistropic Hole Mobilities in Organic Semiconductors. Journal of Physical Chemistry B, 2009, 113, 8813-8819.	2.6	292
11	Leadâ€Free Silverâ€Bismuth Halide Double Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2018, 57, 5359-5363.	13.8	281
12	Nafion/Zeolite Nanocomposite Membrane by in Situ Crystallization for a Direct Methanol Fuel Cell. Chemistry of Materials, 2006, 18, 5669-5675.	6.7	276
13	Lithiumâ€Doped Conjugated Microporous Polymers for Reversible Hydrogen Storage. Angewandte Chemie - International Edition, 2010, 49, 3330-3333.	13.8	258
14	Ultrasensitive and Fast Allâ€Inorganic Perovskiteâ€Based Photodetector via Fast Carrier Diffusion. Advanced Materials, 2017, 29, 1703758.	21.0	255
15	ReaxFFMgHReactive Force Field for Magnesium Hydride Systems. Journal of Physical Chemistry A, 2005, 109, 851-859.	2.5	234
16	Meccano on the Nanoscale—A Blueprint for Making Some of the World's Tiniest Machines. Australian Journal of Chemistry, 2004, 57, 301.	0.9	228
17	Improved Designs of Metal–Organic Frameworks for Hydrogen Storage. Angewandte Chemie - International Edition, 2007, 46, 6289-6292.	13.8	212
18	Synthesis of conjugated microporous polymer nanotubes with large surface areas as absorbents for iodine and CO ₂ uptake. Journal of Materials Chemistry A, 2015, 3, 87-91.	10.3	212

125

#	Article	IF	CITATIONS
19	Airâ€Stable, Leadâ€Free Zeroâ€Dimensional Mixed Bismuthâ€Antimony Perovskite Single Crystals with Ultraâ€broadband Emission. Angewandte Chemie - International Edition, 2019, 58, 2725-2729.	13.8	199
20	Colloidal Synthesis and Chargeâ€Carrier Dynamics of Cs ₂ AgSb _{1â^'<i>y</i>} Bi _{<i>y</i>} X ₆ (X: Br, Cl; 0 ≤i>y) T	j EBQ qO O	O rgg BT /Ove
21	Conductive Microporous Covalent Triazineâ€Based Framework for Highâ€Performance Electrochemical Capacitive Energy Storage. Angewandte Chemie - International Edition, 2018, 57, 7992-7996.	13.8	193
22	Colloidal Synthesis and Optical Properties of Allâ€Inorganic Lowâ€Dimensional Cesium Copper Halide Nanocrystals. Angewandte Chemie - International Edition, 2019, 58, 16087-16091.	13.8	192
23	Superhydrophobic Activated Carbonâ€Coated Sponges for Separation and Absorption. ChemSusChem, 2013, 6, 1057-1062.	6.8	190
24	Quantitative prediction of charge mobilities of π-stacked systems by first-principles simulation. Nature Protocols, 2015, 10, 632-642.	12.0	187
25	Contact Resistance for "End-Contacted―Metalâ^'Graphene and Metalâ^'Nanotube Interfaces from Quantum Mechanics. Journal of Physical Chemistry C, 2010, 114, 17845-17850.	3.1	177

26	Isolated Single-Atom Ni–N ₅ Catalytic Site in Hollow Porous Carbon Capsules for Efficient Lithium–Sulfur Batteries. Nano Letters, 2021, 21, 9691-9698.	9.1	167
27	Leadâ€Free Sodium–Indium Double Perovskite Nanocrystals through Doping Silver Cations for Bright Yellow Emission. Angewandte Chemie - International Edition, 2019, 58, 17231-17235.	13.8	166
28	Allâ€Inorganic Leadâ€Free 0D Perovskites by a Doping Strategy to Achieve a PLQY Boost from <2 % to 90 %. Angewandte Chemie - International Edition, 2020, 59, 12709-12713.	13.8	162

29	In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production. Nature Communications, 2022, 13, 1355.	12.8	140
30	Enhancement of Photogenerated Electron Transport in Dyeâ€Sensitized Solar Cells with Introduction of a Reduced Graphene Oxide–TiO ₂ Junction. Chemistry - A European Journal, 2011, 17, 10832-10837.	3.3	133

31	Leadâ€Free Silverâ€Bismuth Halide Double Perovskite Nanocrystals. Angewandte Chemie, 2018, 130, 5457-5461.	2.0	132
32	DFT Study of Hydrogen Storage by Spillover on Graphene with Boron Substitution. Journal of Physical Chemistry C, 2011, 115, 9241-9249.	3.1	129
33	An oleic acid-capped CdSe quantum-dot sensitized solar cell. Applied Physics Letters, 2009, 94, .	3.3	126
34	Efficient Thermally Activated Delayed Fluorescence from Allâ€Inorganic Cesium Zirconium Halide Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2020, 59, 21925-21929.	13.8	126
35	Contact Resistance Properties between Nanotubes and Various Metals from Quantum Mechanics. Journal of Physical Chemistry C, 2007, 111, 11113-11116.	3.1	125

³⁶ Innovative nanoporous carbons with ultrahigh uptakes for capture and reversible storage of CO2 and volatile iodine. Journal of Hazardous Materials, 2017, 321, 210-217. 12.4

#	Article	IF	CITATIONS
37	A Two-Stage Mechanism of Bimetallic Catalyzed Growth of Single-Walled Carbon Nanotubes. Nano Letters, 2004, 4, 2331-2335.	9.1	116
38	Aceneâ€Modified Triphenylamine Dyes for Dye‧ensitized Solar Cells: A Computational Study. ChemPhysChem, 2012, 13, 2051-2060.	2.1	114
39	High-Capacity Amidoxime-Functionalized β-Cyclodextrin/Graphene Aerogel for Selective Uranium Capture. Environmental Science & Technology, 2021, 55, 9181-9188.	10.0	112
40	Controlled synthesis of Pt-decorated Au nanostructure and its promoted activity toward formic acid electro-oxidation. Electrochimica Acta, 2009, 54, 4916-4924.	5.2	108
41	The study of Pt@Au electrocatalyst based on Cu underpotential deposition and Pt redox replacement. Electrochimica Acta, 2009, 54, 3092-3097.	5.2	105
42	Photo-oxidative degradation of methylammonium lead iodide perovskite: mechanism and protection. Journal of Materials Chemistry A, 2019, 7, 2275-2282.	10.3	105
43	Theoretical Investigation of CO ₂ Adsorption and Dissociation on Low Index Surfaces of Transition Metals. Journal of Physical Chemistry C, 2018, 122, 8306-8314.	3.1	104
44	Manganese-Doped, Lead-Free Double Perovskite Nanocrystals for Bright Orange-Red Emission. ACS Central Science, 2020, 6, 566-572.	11.3	102
45	Efficient Fixation of CO ₂ by a Zinc oordinated Conjugated Microporous Polymer. ChemSusChem, 2014, 7, 2110-2114.	6.8	101
46	(C ₆ H ₅ C ₂ H ₄ NH ₃) ₂ Gel _{4A Layered Two-Dimensional Perovskite with Potential for Photovoltaic Applications. Journal of Physical Chemistry Letters, 2017, 8, 4402-4406.}	lb>: 4.6	98
47	First-Principles Screening of All-Inorganic Lead-Free ABX ₃ Perovskites. Journal of Physical Chemistry C, 2018, 122, 7670-7675.	3.1	98
48	An Electrochemical Color-Switchable RGB Dye:Â Tristable [2]Catenane. Journal of the American Chemical Society, 2005, 127, 15994-15995.	13.7	95
49	Size effect of lead-free halide double perovskite on luminescence property. Science China Chemistry, 2019, 62, 1405-1413.	8.2	95
50	Simulation of Hole Mobility in α-Oligofuran Crystals. Journal of Physical Chemistry B, 2011, 115, 2140-2147.	2.6	92
51	Versatile Nickel–Lanthanum(III) Catalyst for Direct Conversion of Cellulose to Glycols. ACS Catalysis, 2015, 5, 874-883.	11.2	92
52	Lead-Free, Two-Dimensional Mixed Germanium and Tin Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 2518-2522.	4.6	92
53	Constructing Sensitive and Fast Lead-Free Single-Crystalline Perovskite Photodetectors. Journal of Physical Chemistry Letters, 2018, 9, 3087-3092.	4.6	92
54	Extra long electron–hole diffusion lengths in CH ₃ NH ₃ PbI _{3â^'x} Cl _x perovskite single crystals. Journal of Materials Chemistry C, 2017, 5, 8431-8435.	5.5	91

#	Article	IF	CITATIONS
55	Directly assembled CdSe quantum dots on TiO2 in aqueous solution by adjusting pH value for quantum dot sensitized solar cells. Electrochemistry Communications, 2009, 11, 2265-2267.	4.7	90
56	Extraordinary Capability for Water Treatment Achieved by a Perfluorous Conjugated Microporous Polymer. Scientific Reports, 2015, 5, 10155.	3.3	90
57	Leadâ€Free, Airâ€6table Allâ€Inorganic Cesium Bismuth Halide Perovskite Nanocrystals. Angewandte Chemie, 2017, 129, 12645-12649.	2.0	88
58	Incorporation of graphene in quantum dot sensitized solar cells based on ZnO nanorods. Chemical Communications, 2011, 47, 6084.	4.1	82
59	Mechanism of the Stoddartâ^'Heath Bistable Rotaxane Molecular Switch. Journal of the American Chemical Society, 2004, 126, 13562-13563.	13.7	80
60	Colloidal Synthesis and Optical Properties of Allâ€Inorganic Lowâ€Dimensional Cesium Copper Halide Nanocrystals. Angewandte Chemie, 2019, 131, 16233-16237.	2.0	78
61	Formamidinium Lead Bromide (FAPbBr3) Perovskite Microcrystals for Sensitive and Fast Photodetectors. Nano-Micro Letters, 2018, 10, 43.	27.0	77
62	Prominently Improved Hydrogen Purification and Dispersive Metal Binding for Hydrogen Storage by Substitutional Doping in Porous Graphene. Journal of Physical Chemistry C, 2012, 116, 21291-21296.	3.1	76
63	Oxygen defect engineering in cobalt iron oxide nanosheets for promoted overall water splitting. Journal of Materials Chemistry A, 2019, 7, 21704-21710.	10.3	76
64	Lead-free and stable antimony–silver-halide double perovskite (CH ₃ NH ₃) ₂ AgSbI ₆ . RSC Advances, 2017, 7, 35175-35180.	3.6	75
65	Enhanced carbon dioxide conversion at ambient conditions via a pore enrichment effect. Nature Communications, 2020, 11, 4481.	12.8	74
66	Electrochemical hydrogen storage properties of ball-milled multi-wall carbon nanotubes. International Journal of Hydrogen Energy, 2009, 34, 1437-1443.	7.1	73
67	Combining theory and experiment in the design of a lead-free ((CH ₃ NH ₃) ₂ AgBil ₆) double perovskite. New Journal of Chemistry, 2017, 41, 9598-9601.	2.8	72
68	Toward Electrochemically Controllable Tristable Three-Station [2]Catenanes. Chemistry - an Asian Journal, 2007, 2, 76-93.	3.3	70
69	Rhodium atalyzed Câ~'H Activationâ€Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions. Angewandte Chemie - International Edition, 2021, 60, 16628-16633.	13.8	68
70	Fluorinated Imidazoles as Proton Carriers for Water-Free Fuel Cell Membranes. Journal of the American Chemical Society, 2004, 126, 15644-15645.	13.7	67
71	Conductive Microporous Covalent Triazineâ€Based Framework for Highâ€Performance Electrochemical Capacitive Energy Storage. Angewandte Chemie, 2018, 130, 8124-8128.	2.0	67
72	Preparation of poly(acrylic acid)–graphite oxide superabsorbent nanocomposites. Journal of Materials Chemistry, 2012, 22, 4811.	6.7	66

#	Article	IF	CITATIONS
73	Co-sensitized quantum dot solar cell based on ZnO nanowire. Applied Surface Science, 2010, 256, 7438-7441.	6.1	64

Reaction Mechanism of Epoxide Cycloaddition to CO₂ Catalyzed by Salen-M (M = Co, Al,) Tj ETQq0 0 $\frac{0.9}{2.5}$ BT /Overlock 10 T

75	Study on the Morphologies of Covalent Organic Microporous Polymers: the Role of Reaction Solvents. Macromolecular Chemistry and Physics, 2012, 213, 1435-1440.	2.2	60
76	Perovskite CH ₃ NH ₃ Pbl _{3–<i>x</i>} Br <i>_x</i> Single Crystals with Charge-Carrier Lifetimes Exceeding 260 μs. ACS Applied Materials & Interfaces, 2017, 9, 14827-14832.	8.0	58
77	Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode. Optics Express, 2010, 18, 1296.	3.4	57
78	Bilayer ZnO nanostructure fabricated by chemical bath and its application in quantum dot sensitized solar cell. Applied Surface Science, 2009, 255, 7508-7511.	6.1	56
79	Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSequantum dot. Nanoscale, 2011, 3, 674-677.	5.6	56
80	Theoretical investigation of triphenylamine dye/titanium dioxide interface for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 16159.	2.8	55
81	Threeâ€Dimensional Superwetting Mesh Film Based On Graphene Assembly for Liquid Transportation and Selective Absorption. ChemSusChem, 2013, 6, 2377-2381.	6.8	55
82	Sulfur rich microporous polymer enables rapid and efficient removal of mercury(II) from water. Chemosphere, 2018, 196, 174-181.	8.2	55
83	Low Threshold Two-Photon-Pumped Amplified Spontaneous Emission in CH ₃ NH ₃ PbBr ₃ Microdisks. ACS Applied Materials & Interfaces, 2016, 8, 19587-19592.	8.0	54
84	Revealing quantitative structure–activity relationships of transport properties in acene and acene derivative organic materials. Physical Chemistry Chemical Physics, 2010, 12, 9267.	2.8	53
85	A 3Nrule for the electronic properties of doped graphene. Nanotechnology, 2013, 24, 225705.	2.6	53
86	Engineered Fabrication of Hierarchical Frameworks with Tuned Pore Structure and N,O-Co-Doping for High-Performance Supercapacitors. ACS Applied Materials & amp; Interfaces, 2017, 9, 31940-31949.	8.0	53
87	Colloidal Synthesis and Chargeâ€Carrier Dynamics of Cs ₂ AgSb _{1â^'<i>y</i>} Bi _{<i>y</i>} X ₆ (X: Br, Cl; 0 ≤i>y) T	j €⊺@ q1 1	05284314
88	Ultrafast Vibrational and Thermal Relaxation of Dye Molecules in Solutions. Journal of Physical Chemistry A, 2003, 107, 10857-10861.	2.5	51
89	Ultra-low resistance at TTF–TCNQ organic interfaces. Chemical Communications, 2010, 46, 5133.	4.1	50
90	Study on adsorption performance of conjugated microporous polymers for hydrogen and organic solvents: The role of pore volume. European Polymer Journal, 2012, 48, 705-711.	5.4	47

#	Article	IF	CITATIONS
91	Limiting Perovskite Solar Cell Performance by Heterogeneous Carrier Extraction. Angewandte Chemie - International Edition, 2016, 55, 13067-13071.	13.8	47
92	Carbon doped boron nitride cages as competitive candidates for hydrogen storage materials. Chemical Communications, 2010, 46, 883-885.	4.1	42
93	Bismuth doped lead-free two-dimensional tin based halide perovskite single crystals. Journal of Energy Chemistry, 2019, 36, 1-6.	12.9	42
94	Endohedral BN Metallofullerene M@B ₃₆ N ₃₆ Complex As Promising Hydrogen Storage Materials. Journal of Physical Chemistry C, 2008, 112, 12195-12200.	3.1	41
95	Airâ€Stable, Leadâ€Free Zeroâ€Dimensional Mixed Bismuthâ€Antimony Perovskite Single Crystals with Ultraâ€broadband Emission. Angewandte Chemie, 2019, 131, 2751-2755.	2.0	41
96	Aryl/hetero-arylethyne bridged dyes: the effect of planar π-bridge on the performance of dye-sensitized solar cells. New Journal of Chemistry, 2011, 35, 127-136.	2.8	40
97	Synthesis, characterization and application of trans-D–B–A-porphyrin based dyes in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 218, 219-225.	3.9	40
98	Superhydrophobic Mesoporous Graphene for Separation and Absorption. ChemPlusChem, 2013, 78, 1282-1287.	2.8	39
99	Chemical fixation of carbon dioxide catalyzed <i>via</i> covalent triazine frameworks as metal free heterogeneous catalysts without a cocatalyst. Journal of Materials Chemistry A, 2019, 7, 26071-26076.	10.3	39
100	Uniform core–shell titanium phosphate nanospheres with orderly open nanopores: a highly active BrÃ,nsted acid catalyst. Chemical Communications, 2010, 46, 1670.	4.1	38
101	Allâ€Inorganic Leadâ€Free 0D Perovskites by a Doping Strategy to Achieve a PLQY Boost from <2 % to 90 %. Angewandte Chemie, 2020, 132, 12809-12813.	2.0	38
102	Colloidal Synthesis and Tunable Multicolor Emission of Vacancyâ€Ordered Cs ₂ HfCl ₆ Perovskite Nanocrystals. Laser and Photonics Reviews, 2022, 16, .	8.7	38
103	Pyridine-Based N-Heterocyclic Carbene Hydride Complexes of Iridium via Câ^'H Activation. Organometallics, 2008, 27, 6193-6201.	2.3	37
104	Efficient fixation of CO2 at mild conditions by a Cr-conjugated microporous polymer. Journal of Energy Chemistry, 2014, 23, 22-28.	12.9	37
105	Carrier Multiplication and Hot-Carrier Cooling Dynamics in Quantum-Confined CsPbl ₃ Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 1921-1926.	4.6	37
106	Niobium-Doped (001)-Dominated Anatase TiO ₂ Nanosheets as Photoelectrode for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 9576-9583.	8.0	36
107	Leadâ€Free Sodium–Indium Double Perovskite Nanocrystals through Doping Silver Cations for Bright Yellow Emission. Angewandte Chemie, 2019, 131, 17391-17395.	2.0	36
108	A DFT study of adsorption hydrogen on the Li-FAU zeolite. International Journal of Hydrogen Energy, 2008, 33, 105-110.	7.1	35

#	Article	IF	CITATIONS
109	Robust and all-inorganic absorbent based on natural clay nanocrystals with tunable surface wettability for separation and selective absorption. RSC Advances, 2014, 4, 12590.	3.6	34
110	Rotational Alignment of Products from the NOCl + Ca Chemiluminescent Reaction. Journal of Physical Chemistry A, 1997, 101, 7486-7489.	2.5	33
111	Chiral Hydroxytetraphenylene-Catalyzed Asymmetric Conjugate Addition of Boronic Acids to Enones. Organic Letters, 2019, 21, 5040-5045.	4.6	33
112	The H+/K+-ATPase inhibitory activities of Trametenolic acid B from Trametes lactinea (Berk.) Pat, and its effects on gastric cancer cells. Fìtoterapìâ, 2013, 89, 210-217.	2.2	32
113	Reversible hydrogen storage of multi-wall carbon nanotubes doped with atomically dispersed lithium. Journal of Materials Chemistry, 2010, 20, 6490.	6.7	30
114	Flexible quantum dot sensitized solar cell by electrophoretic deposition of CdSe quantum dots on ZnO nanorods. Physical Chemistry Chemical Physics, 2011, 13, 13182.	2.8	30
115	Carbonization of self-assembled nanoporous hemin with a significantly enhanced activity for the oxygen reduction reaction. Faraday Discussions, 2014, 176, 393-408.	3.2	30
116	A green and facile method toward synthesis of waste paper-derived 3D functional porous graphene via in situ activation of cobalt(<scp>ii</scp>). Journal of Materials Chemistry A, 2015, 3, 16072-16078.	10.3	28
117	In Silico Design of Covalent Organic Framework-Based Electrocatalysts. Jacs Au, 2021, 1, 1497-1505.	7.9	28
118	3-Acyl-5-hydroxybenzofuran derivatives as potential anti-estrogen breast cancer agents: A combined experimental and theoretical investigation. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4617-4621.	2.2	27
119	Ab initio and RRKM calculations of o-benzyne pyrolysis. Chemical Physics Letters, 1998, 288, 33-36.	2.6	26
120	Bifunctional Anchors Connecting Carbon Nanotubes to Metal Electrodes for Improved Nanoelectronics. Journal of the American Chemical Society, 2007, 129, 9834-9835.	13.7	26
121	Phage display screening against a set of targets to establish peptide-based sugar mimetics and molecular docking to predict binding site. Bioorganic and Medicinal Chemistry, 2009, 17, 4825-4832.	3.0	26
122	Accurate van der Waals force field for gas adsorption in porous materials. Journal of Computational Chemistry, 2017, 38, 1991-1999.	3.3	26
123	Excitationâ€Dependent Emission in Allâ€Inorganic Leadâ€Free Cs ₂ ScCl ₅ ·H ₂ O Perovskite Crystals. Laser and Photonics Reviews, 2022, 16, .	8.7	26
124	Conjugated Microporous Polymerâ€Derived Porous Hard Carbon as Highâ€Rate Longâ€Life Anode Materials for Lithium Ion Batteries. Energy Technology, 2013, 1, 721-725.	3.8	25
125	First-Principles Screening of Lead-Free Methylammonium Metal Iodine Perovskites for Photovoltaic Application. Journal of Physical Chemistry C, 2017, 121, 24359-24364.	3.1	25
126	Unblocked intramolecular charge transfer for enhanced CO2 photoreduction enabled by an imidazolium-based ionic conjugated microporous polymer. Applied Catalysis B: Environmental, 2022, 300, 120719.	20.2	25

#	Article	IF	CITATIONS
127	Efficient Thermally Activated Delayed Fluorescence from Allâ€Inorganic Cesium Zirconium Halide Perovskite Nanocrystals. Angewandte Chemie, 2020, 132, 22109-22113.	2.0	24
128	Improving the performance of quantum dot-sensitized solar cells by using TiO2nanosheets with exposed highly reactive facets. Nanotechnology, 2013, 24, 245401.	2.6	23
129	Homologous MXeneâ€Derived Electrodes for Potassiumâ€lon Full Batteries. Advanced Energy Materials, 2022, 12, .	19.5	23
130	Potential-energy surface of H·SO2. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 25-28.	1.7	22
131	Synthesis of cyanated tetracenes as the organic semiconductors. Organic Electronics, 2009, 10, 1054-1059.	2.6	22
132	Steric effects on the control of endo/exo-selectivity in the asymmetric cycloaddition reaction of 3,4-dimethyl-1-phenylarsole. Dalton Transactions, 2010, 39, 5453.	3.3	22
133	Synthesis of conjugated microporous polymers for gas storage and selective adsorption. Journal of Materials Science, 2015, 50, 6388-6394.	3.7	22
134	Iron single-atom catalysts confined in covalent organic frameworks for efficient oxygen evolution reaction. Cell Reports Physical Science, 2022, 3, 100804.	5.6	22
135	Controllable synthesis of ultrasmall CuInSe ₂ quantum dots for photovoltaic application. RSC Advances, 2014, 4, 33855-33860.	3.6	21
136	Formation of Cyclic Carbonates from CO ₂ and Epoxides Catalyzed by a Cobalt oordinated Conjugated Microporous Polymer. ChemCatChem, 2017, 9, 2584-2587.	3.7	21
137	Rhodium(<scp>iii</scp>)-catalyzed asymmetric [4+1] spiroannulations of <i>O</i> -pivaloyl oximes with α-diazo compounds. Chemical Communications, 2021, 57, 8268-8271.	4.1	21
138	Physicochemical, self-assembly and field-effect transistor properties of anti- and syn- thienoacene isomers. Journal of Materials Chemistry, 2011, 21, 11335.	6.7	18
139	Estrogenic and anti-estrogenic activities of hispolon from Phellinus Ionicerinus (Bond.) Bond. et sing. Fìtoterapìâ, 2014, 95, 93-101.	2.2	18
140	Recent developments of firstâ€principles force fields. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1282.	14.6	18
141	Enhancing Intersystem Crossing to Achieve Thermally Activated Delayed Fluorescence in a Water-Soluble Fluorescein Derivative with a Flexible Propenyl Group. Journal of Physical Chemistry Letters, 2020, 11, 5692-5698.	4.6	18
142	Ambient hydrogenation of carbon dioxide into liquid fuel by a heterogeneous synergetic dual single-atom catalyst. Cell Reports Physical Science, 2022, 3, 100705.	5.6	18
143	Tuning of Delicate Host–Guest Interactions in Hydrated MILâ€53 and Functional Variants for Furfural Capture from Aqueous Solution. Angewandte Chemie - International Edition, 2021, 60, 1629-1634.	13.8	17
144	Bifunctional poly(ionic liquid) catalyst with dual-active-center for CO2 conversion: Synergistic effect of triazine and imidazolium motifs. Journal of CO2 Utilization, 2021, 54, 101778.	6.8	17

#	Article	IF	CITATIONS
145	Induced-fit docking and binding free energy calculation on furostanol saponins from Tupistra chinensis as epidermal growth factor receptor inhibitors. Medicinal Chemistry Research, 2013, 22, 4970-4979.	2.4	16
146	Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO ₂ electrode. Nanotechnology, 2013, 24, 415401.	2.6	16
147	Hydrogen and CO2 storage in high surface area covalent triazine–based frameworks. Materials Today Energy, 2020, 18, 100506.	4.7	16
148	Bioinspired succinyl-β-cyclodextrin membranes for enhanced uranium extraction and reclamation. Environmental Science: Nano, 2020, 7, 3124-3135.	4.3	16
149	Salenâ€Based Conjugated Microporous Polymers for Efficient Oxygen Evolution Reaction. Chemistry - A European Journal, 2020, 26, 7720-7726.	3.3	16
150	A Rare η3 Binding Mode of Aryloxides in Iridium, Rhodium, and Ruthenium Complexes. Organometallics, 2008, 27, 6390-6392.	2.3	15
151	Terahertz response in single-walled carbon nanotube transistor: a real-time quantum dynamics simulation. Nanotechnology, 2009, 20, 505401.	2.6	15
152	Protonated Form: The Potent Form of Potassium-Competitive Acid Blockers. PLoS ONE, 2014, 9, e97688.	2.5	15
153	A DFT Exploration of Efficient Catalysts Based on Metalâ€6alen Monomers for the Cycloaddition Reaction of CO ₂ to Propylene Oxide. ChemistrySelect, 2017, 2, 4533-4537.	1.5	15
154	A Porphyrinâ€Based Covalent Organic Framework for Metalâ€Free Photocatalytic Aerobic Oxidative Coupling of Amines. Chemistry - A European Journal, 2021, 27, 14390-14395.	3.3	15
155	A D–π–A–π–A type dye for highly efficient dye-sensitized solar cells. RSC Advances, 2015, 5, 37574-375	5806	13
156	CO ₂ Fixation into Cyclic Carbonates by a Znâ€5alen Based Conjugated Microporous Polymer. ChemistrySelect, 2020, 5, 10516-10520.	1.5	13
157	Improving Contact Resistance at the Nanotubeâ~'Cu Electrode Interface Using Molecular Anchors. Journal of Physical Chemistry C, 2008, 112, 11042-11049.	3.1	12
158	Improved organic hydrogen carriers with superior thermodynamic properties. Chemical Communications, 2009, , 1751.	4.1	12
159	<i>In silico</i> design of dual-doped nitrogenated graphene (C ₂ N) employed in electrocatalytic reduction of carbon monoxide to ethylene. Journal of Materials Chemistry A, 2022, 10, 4703-4710.	10.3	12
160	Electrochemical properties of ball-milled LaMg12–Ni composites containing carbon nanotubes. International Journal of Hydrogen Energy, 2009, 34, 1444-1449.	7.1	11
161	Two-step growth of a hierarchical ZnO nanostructure by aqueous thermal decomposition in a neutral solution and its photovoltaic property. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 822-827.	2.7	11
162	Methyllithiumâ€Doped Naphthylâ€Containing Conjugated Microporous Polymer with Enhanced Hydrogen Storage Performance. Chemistry - A European Journal, 2016, 22, 7944-7949.	3.3	11

#	Article	IF	CITATIONS
163	Combination Rules for Morse-Based van der Waals Force Fields. Journal of Physical Chemistry A, 2018, 122, 1672-1677.	2.5	11
164	Large-Scale Ligand-Free Synthesis of Homogeneous Core–Shell Quantum-Dot-Modified Cs ₄ PbBr ₆ Microcrystals. Inorganic Chemistry, 2019, 58, 10620-10624.	4.0	11
165	High-performance all-solution-processed quantum dot near-infrared-to-visible upconversion devices for harvesting photogenerated electrons. Applied Physics Letters, 2019, 115, 221103.	3.3	11
166	Rhodium-Catalyzed and Chiral Zinc Carboxylate-Assisted Allenylation of Benzamides via Kinetic Resolution. Organic Letters, 2021, 23, 7038-7043.	4.6	11
167	Theoretical studies of IM-12 zeolite for acidic catalysts. Microporous and Mesoporous Materials, 2008, 115, 261-266.	4.4	10
168	Theoretical studies on the catalytic hydrogenation of carbon dioxide by 3d transition metals single-atom catalyst supported on covalent triazine frameworks. Molecular Catalysis, 2021, 508, 111581.	2.0	10
169	Edge-on-Plane-Confined Covalent Organic Frameworks Enable a Defect- and Nitrogen-Rich Carbon Matrix for High-Rate Lithium-Ion Storage. ACS Applied Energy Materials, 2021, 4, 5957-5962.	5.1	10
170	Phonon-electron coupling and tunneling effect on charge transport in organic semi-conductor crystals of Cn-BTBT. Journal of Chemical Physics, 2016, 145, 104108.	3.0	9
171	Theoretical studies of the decyclization /cyclization of the C6H5 radical. Chemical Physics Letters, 1997, 273, 205-210.	2.6	8
172	Sodium Diffusion through Aluminum-Doped Zeolite BEA System: Effect of Water Solvation. Journal of Physical Chemistry C, 2009, 113, 819-826.	3.1	8
173	Combination Rules and Accurate van der Waals Force Field for Gas Uptakes in Porous Materials. Journal of Physical Chemistry A, 2019, 123, 7847-7854.	2.5	8
174	First-Principles Screening of Lead-Free Mixed-Anion Perovskites for Photovoltaics. Journal of Physical Chemistry C, 2020, 124, 1303-1308.	3.1	8
175	Protective Effect of Eburicoic Acid of the Chicken of the Woods Mushroom, Laetiporus sulphureus (Higher Basidiomycetes), Against Gastric Ulcers in Mice. International Journal of Medicinal Mushrooms, 2015, 17, 619-626.	1.5	8
176	Rotational alignment of products from NOCl+Sr chemiluminescent reaction. Journal of Chemical Physics, 1998, 109, 1819-1823.	3.0	7
177	Synthesis and cytotoxic activities of 2-substituted (25R)-spirostan-1,4,6-triene-3-ones via ring-opening/elimination and 'click' strategy. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3726-3729.	2.2	7
178	The Second Excited Tripletâ€State Facilitates TADF and Triplet–Triplet Annihilation Photon Upconversion via a Thermally Activated Reverse Internal Conversion. Advanced Optical Materials, 2022, 10, .	7.3	7
179	Van der Waals Heterostructures Based on Porous Graphene for Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2022, 126, 7849-7858.	3.1	7
180	Design, synthesis and biological evaluation of bisabolangelone oxime derivatives as potassium-competitive acid blockers (P-CABs). Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2268-2272.	2.2	5

#	Article	IF	CITATIONS
181	Methyl-Hispolon from Phellinus lonicerinus (Agaricomycetes) Affects Estrogen Signals in MCF-7 Breast Cancer Cells and Premature Aging in Rats. International Journal of Medicinal Mushrooms, 2019, 21, 381-392.	1.5	5
182	Magnetic substate transitions in collisions of Sr(5s5p 1P1) with Ar. Chemical Physics Letters, 1996, 260, 191-194.	2.6	4
183	â€~Nanoreactors' for photocatalytic H2 evolution in oil–water biphase systems. Physical Chemistry Chemical Physics, 2010, 12, 14449.	2.8	4
184	The Direct Carboxylation of Terminal Alkynes with Carbon Dioxide Using Copper-Conjugated Microporous Polymer as Catalyst. Advanced Materials Research, 0, 634-638, 612-615.	0.3	4
185	Conjugated microporous polymer foams with excellent thermal insulation performance in a humid environment. RSC Advances, 2021, 11, 13957-13963.	3.6	4
186	The intramolecular hydrogen atom transfer in the photodissociation of o-chlorotoluene. Chemical Physics Letters, 1998, 285, 404-409.	2.6	3
187	DFT Calculations and Docking Study on Sesquiterpene Lactones: Inhibition of Aromatase. Procedia Environmental Sciences, 2011, 8, 446-450.	1.4	3
188	Bisabolangelone, a gastric H+/K+-ATPase inhibitor: homology modeling and docking study. Medicinal Chemistry Research, 2012, 21, 2476-2479.	2.4	3
189	Collisional energy transfer in highly vibrationally excited C70. Chemical Physics Letters, 1998, 287, 747-752.	2.6	2
190	Neuroprotective effect of bisabolangelone on hydrogen peroxide-induced neurotoxicity in SH-SY5Y cells. Medicinal Chemistry Research, 2015, 24, 3813-3820.	2.4	2
191	Carrier mobility in double-helix DNA and RNA: A quantum chemistry study with Marcus-Hush theory. Journal of Chemical Physics, 2016, 145, 235101.	3.0	2
192	Computational insights into the interaction mechanism of triazolyl substituted tetrahydrobenzofuran derivatives with H+,K+-ATPase at different pH. Journal of Computer-Aided Molecular Design, 2016, 30, 27-37.	2.9	2
193	van der Waals Function for Molecular Mechanics. Journal of Physical Chemistry A, 2020, 124, 2102-2107.	2.5	2
194	Digital-intellectual design of microporous organic polymers. Physical Chemistry Chemical Physics, 2021, 23, 22835-22853.	2.8	2
195	Meccano on the Nanoscale — A Blueprint for Making Some of the World′s Tiniest Machines. ChemInform, 2004, 35, no.	0.0	1
196	Inside Cover: Acene-Modified Triphenylamine Dyes for Dye-Sensitized Solar Cells: A Computational Study (ChemPhysChem 8/2012). ChemPhysChem, 2012, 13, 1966-1966.	2.1	1
197	Synthesis, Structure and Gastric H ⁺ /K ⁺ -ATPase Inhibitory Activities of Bisabolonalone Hydrazone Carboxamides. Advanced Materials Research, 0, 781-784, 1098-1101.	0.3	1
198	Environmentally benign and economic synthesis of covalent triazine-based frameworks. Chinese Journal of Catalysis, 2017, 38, 583-588.	14.0	1

#	Article	IF	CITATIONS
199	Diverse carrier mobility of monolayer BNC _{<i>x</i>} : a combined density functional theory and Boltzmann transport theory study. Journal of Physics Condensed Matter, 2017, 29, 455305.	1.8	1
200	Computational Screening of Zeolite Catalysts for MTO Reaction. ChemistrySelect, 2017, 2, 10290-10294.	1.5	1
201	Molecular-scale observation of YD2- o -C8 self-assembled monolayer on TiO 2 (1 1 0). Surface Science, 2017, 665, 103-107.	1.9	1
202	Molecular docking, binding free energy analysis, and biological evaluation of bisabolonalone hydrazone carboxamides as H+,K+-ATPase reversible inhibitors. Medicinal Chemistry Research, 2018, 27, 332-340.	2.4	1
203	In silico design of new nitrogen-rich melamine-based porous polyamides applied to CO2/N2 separation. Chemical Physics Letters, 2021, 771, 138509.	2.6	1
204	Progress and Prospect of Theoretical Simulation of Microporous Materials. Acta Chimica Sinica, 2015, 73, 579.	1.4	1
205	In silico design of metal-free hydrophosphate catalysts for hydrogenation of CO2 to formate. Physical Chemistry Chemical Physics, 2022, 24, 2901-2908.	2.8	1
206	Theo-chlorotoluene photodissociation at 266 nm. Science in China Series B: Chemistry, 1998, 41, 471-478.	0.8	0
207	A highly effective method for synthesizing hybrid Pt–CdSe nanocomposite. Applied Surface Science, 2009, 256, 1526-1529.	6.1	0
208	3D-QSAR and pharmacophore model study on aryl diphenolic azoles as estrogen receptor-β ligands. Medicinal Chemistry Research, 2013, 22, 4468-4480.	2.4	0
209	Quantitative Structure-Activity Relationship Model of Lenalidomide Analogues as TNF-Inhibitors. , 2013, , .		Ο
210	Microwave-Assisted Synthesis and Anti-Breast Cancer Activity of 3-Acyl-5-hydroxybenzofurans. Advanced Materials Research, 2013, 803, 99-102.	0.3	0
211	Structure-Based Virtual Screening of Compound Library for Anti-Estrogen Breast Cancer Candidates. Advanced Materials Research, 2014, 884-885, 531-534.	0.3	Ο
212	Effect of Araloside A on Acute Gastric Ulcer Induced by Alcohol and Aspirin in Mice. , 2016, , .		0
213	Theoretical design of Salen–metal-based materials for highly selective separation of C2H2/C2H4. Chemical Physics Letters, 2021, 771, 138523.	2.6	Ο
214	Synthesis of a Dye Containing Benzothiadiazole for Highly Efficient Dye-sensitized Solar Cells. , 0, , .		0
215	Mn-, Ru-Coordinated Covalent Triazine Framework as Catalysts for Epoxidation of Cyclohexene. , 0, , .		0
216	The mechanism of sugar produced from simple glycolaldehyde derivative at ambient conditions. International Journal of Quantum Chemistry, 2022, 122, .	2.0	0