Liejin Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4153836/publications.pdf

Version: 2024-02-01

88	10,940	32	88
papers	citations	h-index	g-index
89	89	89	15673 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Enhanced photo fermentative H2 production from cornstalk by acid-tolerant R. capsulatus mutation. Biomass Conversion and Biorefinery, 2024, 14, 4677-4686.	2.9	1
2	Photocatalytic overall water splitting without noble-metal: Decorating CoP on Al-doped SrTiO3. Journal of Colloid and Interface Science, 2022, 606, 491-499.	5.0	27
3	Thermodynamic analysis of the superiority of the direct mass transfer design in the supercritical water gasification system. Energy, 2022, 244, 122722.	4.5	5
4	Phenyl-incorporated carbon nitride photocatalyst with extended visible-light-absorption for enhanced hydrogen production from water splitting. Journal of Colloid and Interface Science, 2022, 622, 494-502.	5.0	10
5	Photo-biological hydrogen production by a temperature-tolerant mutant of Rhodobacter capsulatus isolated by transposon mutagenesis. Bioresource Technology, 2021, 320, 124286.	4.8	29
6	CRISPR/Cas12aâ€mediated genome engineering in the photosynthetic bacterium <i>Rhodobacter capsulatus</i> . Microbial Biotechnology, 2021, 14, 2700-2710.	2.0	7
7	Experiment and simulation study on mechanism and solution of ash agglomeration in supercritical water gasification of coal for hydrogen production. Fuel, 2021, 290, 120016.	3.4	16
8	Experimental Investigation on Supercritical Water Gasification of Organic-Rich Shale with Low Maturity for Syngas Production. Energy & Energy & 2021, 35, 7657-7665.	2.5	18
9	Combining experiment and density functional theory to study the mechanism of thermochemical sulfate reduction by hydrogen in supercritical water. Journal of Molecular Liquids, 2021, 330, 115654.	2.3	11
10	High-Yielding Terpene-Based Biofuel Production in <i>Rhodobacter capsulatus</i> . ACS Synthetic Biology, 2021, 10, 1545-1552.	1.9	15
11	Directly convert lignocellulosic biomass to H2 without pretreatment and added cellulase by two-stage fermentation in semi-continuous modes. Renewable Energy, 2021, 170, 866-874.	4.3	18
12	A Review of Experimental Researches on the Thermophysical Properties of Hydrogen-Containing Mixtures at High Temperatures and High Pressures. Journal of Chemical & Engineering Data, 2021, 66, 3361-3385.	1.0	4
13	Hydrogen production by supercritical water gasification of methylhydrazine in continuous system. Journal of Water Process Engineering, 2021, 42, 102037.	2.6	11
14	Efficient hydrogen production in a spotlight reactor with plate photocatalyst of TiO2/NiO heterojunction supported on nickel foam. Energy, 2021, 228, 120578.	4.5	22
15	Performance simulation and thermodynamics analysis of hydrogen production based on supercritical water gasification of coal. International Journal of Hydrogen Energy, 2021, 46, 28474-28485.	3.8	21
16	Enhanced biohydrogen production by an ammonium-tolerant Rhodobacter capsulatus from sugarcane bagasse. Fuel, 2021, 300, 121009.	3.4	16
17	One-Pot Bioconversion of Lignin-Derived Substrates into Gallic Acid. Journal of Agricultural and Food Chemistry, 2021, 69, 11336-11341.	2.4	21
18	Experimental measurements on chemical reaction and thermal conductivity of the H2/CO2/CO/CH4/H2O system using the short-hot-wire method at 664–915 K and 9.2–22.2 MPa. International Journal of Heat and Mass Transfer, 2021, 177, 121554.	2.5	4

#	Article	IF	CITATIONS
19	Variation of pore structure in Zhundong coal particle with stepped K2CO3 loading during supercritical water gasification. Fuel, 2021, 305, 121457.	3.4	9
20	Thermodynamic modeling and analysis of the heat integration and power generation in pig manure supercritical water gasification system. Energy Conversion and Management, 2021, 248, 114809.	4.4	19
21	Enhanced Oil Recovery and in Situ Upgrading of Heavy Oil by Supercritical Water Injection. Energy & Enhanced Oil Recovery and in Situ Upgrading of Heavy Oil by Supercritical Water Injection. Energy & Enhanced Oil Recovery and in Situ Upgrading of Heavy Oil by Supercritical Water Injection. Energy	2.5	43
22	<i>PVT</i> Measurements of the H ₂ â€"CO ₂ â€"CO ₂ â€"CO ₂ â€"CH ₄ â€"COâ€"H ₂ O System at 740â€"939 K an 18.1â€"34.7 MPa with an Isochoric Apparatus and the Development of a Virial Equation of State. Journal of Chemical & Samp; Engineering Data, 2020, 65, 4881-4891.	d 1.0	4
23	High-Yielding Protocatechuic Acid Synthesis from <scp>l</scp> -Tyrosine in <i>Escherichia coli</i> ACS Sustainable Chemistry and Engineering, 2020, 8, 14949-14954.	3.2	18
24	Thermal conductivity measurements of the H2/CO2 mixture using the short-hot-wire method at 323.15–620.05ÂK and 2.14–9.37ÂMPa. International Journal of Hydrogen Energy, 2020, 45, 31213-31224.	3.8	8
25	Hydrogen production by supercritical water gasification of coal: A reaction kinetic model including nitrogen and sulfur elements. International Journal of Hydrogen Energy, 2020, 45, 31732-31744.	3.8	41
26	Firstâ€Principles Investigation of βâ€FeOOH for Hydrogen Evolution: Identifying Reactive Sites and Boosting Surface Reactions. Chemistry - A European Journal, 2020, 26, 7118-7123.	1.7	6
27	On factors limiting the performance of photoelectrochemical CO2 reduction. Journal of Chemical Physics, 2020, 152, 100901.	1.2	30
28	Viscosity Measurements of the H ₂ â€"CO ₂ , H ₂ â€"CO ₂ ∂€"CH ₄ , and H ₂ â€"H ₂ ∂ Mixtures and the H ₂ â€"CO ₂ ∂€"CH ₄ å€"COâ€"H ₂ O System at 280â€"924 bolder 33.1 MPa with a Capillary Apparatus. Journal of Chemical & Company Compan	d K ¹ and	16
29	Nanoporous WO3 films synthesized by tuning anodization conditions for photoelectrochemical water oxidation. Solar Energy Materials and Solar Cells, 2020, 209, 110472.	3.0	28
30	Effects of Alkaline Metals on the Reactivity of the Carbon Structure after Partial Supercritical Water Gasification of Coal. Energy & Samp; Fuels, 2020, 34, 13916-13923.	2.5	7
31	Something new under the sun for ultra low-cost single-junction PhotoAnodes for highly efficient photocatalytic water splitting. Solar Energy Materials and Solar Cells, 2019, 201, 110083.	3.0	6
32	Density Measurements of the H2–CO2–CH4–CO–H2O System by the Isochoric Method at 722–930 K 15.4–30.3 MPa. Journal of Chemical & Data, 2019, 64, 4024-4036.	and 1.8	11
33	Efficient photocatalytic overall water splitting over a core-shell GalnZnON@GalnON homojunction. Applied Catalysis B: Environmental, 2019, 255, 117741.	10.8	20
34	Effect of cornstalk hydrolysis on photo-fermentative hydrogen production by R.Âcapsulatus. International Journal of Hydrogen Energy, 2019, 44, 11593-11601.	3.8	12
35	Density Data of Two (H ₂ + CO ₂) Mixtures and a (H ₂ +) Tj ETQq1 1 0.7843 Pressures up to 25 MPa. Journal of Chemical & Engineering Data, 2019, 64, 1693-1704.	14 rgBT /C 1.0	Overlock 10 15
36	Tin(IV)-Tolerant Vapor-Phase Growth and Photophysical Properties of Aligned Cesium Tin Halide Perovskite (CsSnX $<$ sub $>$ 3 $<$ /sub $>$; X = Br, I) Nanowires. ACS Energy Letters, 2019, 4, 1045-1052.	8.8	84

#	Article	IF	CITATIONS
37	On the Theoretical and Experimental Control of Defect Chemistry and Electrical and Photoelectrochemical Properties of Hematite Nanostructures. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2031-2041.	4.0	29
38	Experimental study on oil-containing wastewater gasification in supercritical water in a continuous system. International Journal of Hydrogen Energy, 2019, 44, 15871-15881.	3.8	42
39	High NH3N tolerance of a cheR2-deletion Rhodobacter capsulatus mutant for photo-fermentative hydrogen production using cornstalk. International Journal of Hydrogen Energy, 2019, 44, 15833-15841.	3.8	22
40	Efficient Unassisted Overall Photocatalytic Seawater Splitting on GaN-Based Nanowire Arrays. Journal of Physical Chemistry C, 2018, 122, 13797-13802.	1.5	85
41	Experimental investigation on the influence of the pyrolysis operating parameters upon the char reaction activity in supercritical water gasification. International Journal of Hydrogen Energy, 2018, 43, 13887-13895.	3.8	28
42	Experimental Investigation on Enhanced Oil Recovery of Extra Heavy Oil by Supercritical Water Flooding. Energy & Extra Heavy Oil by Supercritical Water Flooding. Energy & Extra Heavy Oil by Supercritical Water Flooding.	2.5	41
43	Kinetics study for sodium transformation in supercritical water gasification of Zhundong coal. International Journal of Hydrogen Energy, 2018, 43, 13869-13878.	3.8	39
44	First-Principles Study on Stability and HER Activity of Noble Metal Single Atoms on TiO ₂ : The Effect of Loading Density. Journal of Physical Chemistry C, 2018, 122, 2546-2553.	1.5	27
45	The photosynthetic hydrogen production performance of a newly isolated Rhodobacter capsulatus JL1 with various carbon sources. International Journal of Hydrogen Energy, 2018, 43, 13860-13868.	3.8	18
46	Facile Synthesis of Ultrafine Hematite Nanowire Arrays in Mixed Water–Ethanol–Acetic Acid Solution for Enhanced Charge Transport and Separation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12594-12602.	4.0	25
47	Single-stage photo-fermentative hydrogen production from hydrolyzed straw biomass using Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 2018, 43, 13810-13820.	3.8	38
48	Reversible Structural Evolution of NiCoO _{<i>x</i>} H _{<i>y</i>} during the Oxygen Evolution Reaction and Identification of the Catalytically Active Phase. ACS Catalysis, 2018, 8, 1238-1247.	5.5	153
49	Effect of Water Adsorption on the Interfacial Structure and Band Edge Alignment of Anatase TiO ₂ (001)/Water by First-Principles Molecular Dynamics. Journal of Physical Chemistry C, 2018, 122, 26965-26973.	1.5	22
50	Enhanced hydrogen production performance of cbbR & pycA inactived R.sphaeroides mutant by improving the ammonium tolerance. International Journal of Hydrogen Energy, 2018, 43, 18142-18150.	3.8	9
51	Making of an Industry-Friendly Artificial Photosynthesis Device. ACS Energy Letters, 2018, 3, 2230-2231.	8.8	48
52	Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nature Photonics, 2017, 11, 315-321.	15.6	580
53	High-Efficiency Gasification of Wheat Straw Black Liquor in Supercritical Water at High Temperatures for Hydrogen Production. Energy & Samp; Fuels, 2017, 31, 3970-3978.	2.5	86
54	Experimental study on hydrogen production by lignite gasification in supercritical water fluidized bed reactor using external recycle of liquid residual. Energy Conversion and Management, 2017, 145, 214-219.	4.4	91

#	Article	IF	CITATIONS
55	System analysis of pulping process coupled with supercritical water gasification of black liquor for combined hydrogen, heat and power production. Energy, 2017, 132, 238-247.	4.5	69
56	Enhancement of Hydrogen Production through a Mixed Culture of <i>Enterobacter cloacae</i> and <i>Rhodobacter sphaeroides</i> Energy & Ener	2.5	13
57	Overexpressing atpXF enhanced photo-fermentative hydrogen production performance of Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 2017, 42, 9641-9649.	3.8	12
58	Vapor-Phase Epitaxial Growth of Aligned Nanowire Networks of Cesium Lead Halide Perovskites (CsPbX $<$ sub $>$ 3 $<$ /sub $>$, X = Cl, Br, I). Nano Letters, 2017, 17, 460-466.	4.5	255
59	Enhanced biohydrogen production from cornstalk through a two-step fermentation: Dark fermentation and photofermentation. International Journal of Energy Research, 2017, 41, 2491-2501.	2.2	21
60	Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO ₃). Journal of the American Chemical Society, 2017, 139, 13525-13532.	6.6	209
61	Sulfur Transformation Characteristics and Mechanisms during Hydrogen Production by Coal Gasification in Supercritical Water. Energy & Samp; Fuels, 2017, 31, 12046-12053.	2.5	35
62	Supercritical water synthesis of bimetallic catalyst and its application in hydrogen production by furfural gasification in supercritical water. International Journal of Hydrogen Energy, 2017, 42, 4943-4950.	3.8	31
63	Hydrogen production from supercritical water gasification of chicken manure. International Journal of Hydrogen Energy, 2016, 41, 22722-22731.	3.8	128
64	Overexpressing FO/F1 operon of ATPase in Rhodobacter sphaeroides enhanced its photo-fermentative hydrogen production. International Journal of Hydrogen Energy, 2016, 41, 6743-6751.	3.8	19
65	α-Fe ₂ O ₃ quantum dots: low-cost synthesis and photocatalytic oxygen evolution capabilities. RSC Advances, 2016, 6, 41060-41066.	1.7	33
66	Gasification of indole in supercritical water: Nitrogen transformation mechanisms and kinetics. International Journal of Hydrogen Energy, 2016, 41, 15985-15997.	3.8	65
67	Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays. ACS Applied Materials & Interfaces, 2016, 8, 23143-23150.	4.0	41
68	Controlled Aqueous Growth of Hematite Nanoplate Arrays Directly on Transparent Conductive Substrates and Their Photoelectrochemical Properties. Chemistry - an Asian Journal, 2016, 11, 2328-2334.	1.7	11
69	On the role of metal atom doping in hematite for improved photoelectrochemical properties: a comparison study. RSC Advances, 2016, 6, 101745-101751.	1.7	45
70	Understanding divergent behaviors in the photocatalytic hydrogen evolution reaction on CdS and ZnS: a DFT based study. Physical Chemistry Chemical Physics, 2016, 18, 16862-16869.	1.3	36
71	Industrialization prospects for hydrogen production by coal gasification in supercritical water and novel thermodynamic cycle power generation system with no pollution emission. Science China Technological Sciences, 2015, 58, 1989-2002.	2.0	88
72	Enhanced hydrogen production from cornstalk by dark- and photo-fermentation with diluted alkali-cellulase two-step hydrolysis. International Journal of Hydrogen Energy, 2015, 40, 12193-12200.	3.8	48

#	Article	IF	CITATIONS
73	Coexpression of Mo- and Fe-nitrogenase in Rhodobacter capsulatus enhanced its photosynthetic hydrogen production. International Journal of Hydrogen Energy, 2015, 40, 927-934.	3.8	19
74	Supercritical water gasification research and development in China. Journal of Supercritical Fluids, 2015, 96, 144-150.	1.6	179
75	A Firstâ€Principles Investigation on Microscopic Atom Distribution and Configurationâ€Averaged Properties in Cd _{1â^²<i>x</i>} Zn _{<i>x</i>} S Solid Solutions. ChemPhysChem, 2014, 15, 3125-3132.	1.0	6
76	Characterization on hydrogen production performance of a newly isolated Clostridium beijerinckii YA001 using xylose. International Journal of Hydrogen Energy, 2014, 39, 19928-19936.	3.8	52
77	Hydrogen production by catalytic gasification of coal in supercritical water with alkaline catalysts: Explore the way to complete gasification of coal. International Journal of Hydrogen Energy, 2014, 39, 19583-19592.	3.8	92
78	Enhanced photosynthetic hydrogen production performance of Rhodobacter capsulatus by deactivating CBB cycle and cytochrome c oxidase. International Journal of Hydrogen Energy, 2014, 39, 3176-3184.	3.8	18
79	Supercritical water gasification of glycerol: Intermediates and kinetics. Journal of Supercritical Fluids, 2013, 78, 95-102.	1.6	92
80	Disruption of multidrug resistance protein gene of Rhodobacter capsulatus results in improved photoheterotrophic hydrogen production. International Journal of Hydrogen Energy, 2013, 38, 13031-13037.	3.8	12
81	Boiling coal in water: Hydrogen production and power generation system with zero net CO2 emission based on coal and supercritical water gasification. International Journal of Hydrogen Energy, 2013, 38, 12953-12967.	3.8	215
82	Enhanced photo-fermentative hydrogen production by Rhodobacter capsulatus with pigment content manipulation. Bioresource Technology, 2012, 118, 490-495.	4.8	34
83	Improved photo – Hydrogen production by transposon mutant of Rhodobacter capsulatus with reduced pigment. International Journal of Hydrogen Energy, 2012, 37, 12229-12233.	3.8	23
84	First-principles study on absolute band edge positions for II–VI semiconductors at (110) surface. Chemical Physics Letters, 2011, 513, 72-76.	1.2	9
85	Effect of operation parameters on anaerobic fermentation using cow dung as a source of microorganisms. International Journal of Hydrogen Energy, 2010, 35, 46-51.	3.8	37
86	A comparison of hydrogen production among three photosynthetic bacterial strains. International Journal of Hydrogen Energy, 2010, 35, 7194-7199.	3.8	32
87	Enhanced bio-hydrogen production from corncob by a two-step process: Dark- and photo-fermentation. Bioresource Technology, 2010, 101, 2049-2052.	4.8	107
88	Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 2010, 110, 6503-6570.	23.0	6,836