Vasiliki Gkretsi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4153760/publications.pdf

Version: 2024-02-01

279701 276775 1,775 49 23 41 citations h-index g-index papers 49 49 49 2796 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	The focal adhesion protein Integrin-Linked Kinase (ILK) as an important player in breast cancer pathogenesis. Cell Adhesion and Migration, 2020, 14, 204-213.	1.1	14
2	Ras Suppressor-1 (RSU1) in Cancer Cell Metastasis: A Tale of a Tumor Suppressor. International Journal of Molecular Sciences, 2020, 21, 4076.	1.8	7
3	Growth differentiation factor 15 (GDF15) in cancer cell metastasis: from the cells to the patients. Clinical and Experimental Metastasis, 2020, 37, 451-464.	1.7	25
4	ILK silencing inhibits migration and invasion of more invasive glioblastoma cells by downregulating ROCK1 and Fascin-1. Molecular and Cellular Biochemistry, 2020, 471, 143-153.	1.4	11
5	Silencing of Growth Differentiation Factor-15 Promotes Breast Cancer Cell Invasion by Down-regulating Focal Adhesion Genes. Anticancer Research, 2020, 40, 1375-1385.	0.5	5
6	Coordinated Expression of Ras Suppressor 1 (RSU-1) and Growth Differentiation Factor 15 (GDF15) Affects Glioma Cell Invasion. Cancers, 2019, 11, 1159.	1.7	9
7	Depletion of Ras Suppressor-1 (RSU-1) promotes cell invasion of breast cancer cells through a compensatory upregulation of a truncated isoform. Scientific Reports, 2019, 9, 10050.	1.6	10
8	Ras suppressor-1 (RSU-1) promotes cell invasion in aggressive glioma cells and inhibits it in non-aggressive cells through STAT6 phospho-regulation. Scientific Reports, 2019, 9, 7782.	1.6	30
9	Collagen content and extracellular matrix cause cytoskeletal remodelling in pancreatic fibroblasts. Journal of the Royal Society Interface, 2019, 16, 20190226.	1.5	25
10	Editorial: Metastasis: From Cell Adhesion and Beyond. Frontiers in Oncology, 2019, 9, 214.	1.3	6
11	Inhibition of Breast Cancer Cell Invasion by Ras Suppressor-1 (RSU-1) Silencing Is Reversed by Growth Differentiation Factor-15 (GDF-15). International Journal of Molecular Sciences, 2019, 20, 163.	1.8	17
12	The role of fibroblast growth factors and their receptors in gliomas: the mutations involved. Reviews in the Neurosciences, 2019, 30, 543-554.	1.4	6
13	Solid Stress Facilitates Fibroblasts Activation to Promote Pancreatic Cancer Cell Migration. Annals of Biomedical Engineering, 2018, 46, 657-669.	1.3	71
14	Tuning the Mechanical Properties of BIEEâ€Crosslinked Semiâ€Interpenetrating, Doubleâ€Hydrophilic Hydrogels. Macromolecular Materials and Engineering, 2018, 303, 1700643.	1.7	2
15	Transforming growth factor- \hat{I}^2 modulates pancreatic cancer associated fibroblasts cell shape, stiffness and invasion. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1537-1546.	1.1	65
16	Atomic force microscopy nano-characterization of 3D collagen gels with tunable stiffness. MethodsX, 2018, 5, 503-513.	0.7	8
17	Cell Adhesion and Matrix Stiffness: Coordinating Cancer Cell Invasion and Metastasis. Frontiers in Oncology, 2018, 8, 145.	1.3	268
18	Vasodilator-Stimulated Phosphoprotein (VASP) depletion from breast cancer MDA-MB-231 cells inhibits tumor spheroid invasion through downregulation of Migfilin, β-catenin and urokinase-plasminogen activator (uPA). Experimental Cell Research, 2017, 352, 281-292.	1.2	21

#	Article	IF	CITATIONS
19	Targeting Inflammation to Improve Tumor Drug Delivery. Trends in Cancer, 2017, 3, 621-630.	3.8	28
20	Exploring the Nano-Surface of Collagenous and Other Fibrotic Tissues with AFM. Methods in Molecular Biology, 2017, 1627, 453-489.	0.4	9
21	Ras Suppressor-1 (RSU-1) in Cancer Cell Metastasis: Friend or Foe?. Critical Reviews in Oncogenesis, 2017, 22, 249-253.	0.2	11
22	The Ras suppressor-1 (RSU-1) in cancer. Advances in Modern Oncology Research, 2017, 3, 47.	0.1	1
23	Identification of Ras suppressor-1 (RSU-1) as a potential breast cancer metastasis biomarker using a three-dimensional (i) in vitro (i) approach. Oncotarget, 2017, 8, 27364-27379.	0.8	35
24	Hyaluronan-Derived Swelling of Solid Tumors, the Contribution of Collagen and Cancer Cells, and Implications for Cancer Therapy. Neoplasia, 2016, 18, 732-741.	2.3	87
25	Comparative proteomic analysis of hypertrophic chondrocytes in osteoarthritis. Clinical Proteomics, 2015, 12, 12.	1.1	49
26	Remodeling Components of the Tumor Microenvironment to Enhance Cancer Therapy. Frontiers in Oncology, 2015, 5, 214.	1.3	96
27	Ras suppressor-1 promotes apoptosis in breast cancer cells by inhibiting PINCH-1 and activating p53-upregulated-modulator of apoptosis (PUMA); verification from metastatic breast cancer human samples. Clinical and Experimental Metastasis, 2015, 32, 255-265.	1.7	23
28	Experimental evidence of Migfilin as a new therapeutic target of hepatocellular carcinoma metastasis. Experimental Cell Research, 2015, 334, 219-227.	1.2	19
29	Fascin-1 depletion from hepatocellular carcinoma cells inhibits migfilin and vasodilator-stimulated phosphoprotein expression and enhances adhesion. Hepatoma Research, 2015, .	0.6	0
30	Cancer cell metastasis; perspectives from the focal adhesion. Advances in Modern Oncology Research, 2015, 1, 2.	0.1	1
31	Elimination of Ras Suppressor-1 from hepatocellular carcinoma cells hinders their in vitro metastatic properties. Anticancer Research, 2015, 35, 1509-12.	0.5	10
32	Migfilin's elimination from osteoarthritic chondrocytes further promotes the osteoarthritic phenotype via \hat{l}^2 -catenin upregulation. Biochemical and Biophysical Research Communications, 2013, 430, 494-499.	1.0	7
33	Mitogen-inducible Gene-2 (MIG2) and migfilin expression is reduced in samples of human breast cancer. Anticancer Research, 2013, 33, 1977-81.	0.5	9
34	Central Role of SREBP-2 in the Pathogenesis of Osteoarthritis. PLoS ONE, 2012, 7, e35753.	1.1	53
35	Lipid metabolism and osteoarthritis: Lessons from atherosclerosis. Progress in Lipid Research, 2011, 50, 133-140.	5.3	131
36	Proteomics of osteoarthritic chondrocytes and cartilage. Expert Review of Proteomics, 2010, 7, 749-760.	1.3	9

3

#	Article	IF	Citations
37	Screening for Familial Mediterranean Fever M694V and V726A Mutations in the Greek Population. Genetic Testing and Molecular Biomarkers, 2009, 13, 291-293.	0.3	4
38	Enhanced liver regeneration following changes induced by hepatocyte-specific genetic ablation of integrin-linked kinase. Hepatology, 2009, 50, 844-851.	3.6	147
39	Liver-specific ablation of integrin-linked kinase in mice results in abnormal histology, enhanced cell proliferation, and hepatomegaly. Hepatology, 2008, 48, 1932-1941.	3.6	79
40	Expression of integrin-linked kinase and its binding partners in chondrosarcoma: Association with prognostic significance. European Journal of Cancer, 2008, 44, 2518-2525.	1.3	36
41	Integrinâ€linked kinase KO mice display abnormal liver histology and hepatomegaly following partial hepatectomy. FASEB Journal, 2008, 22, 465.9.	0.2	0
42	Actin cytoskeleton dynamics linked to synovial fibroblast activation as a novel pathogenic principle in TNF-driven arthritis. Annals of the Rheumatic Diseases, 2007, 66, iii23-iii28.	0.5	39
43	Integrin-linked kinase is involved in matrix-induced hepatocyte differentiation. Biochemical and Biophysical Research Communications, 2007, 353, 638-643.	1.0	35
44	Loss of integrin linked kinase from mouse hepatocytesin vitro andin vivo results in apoptosis and hepatitis. Hepatology, 2007, 45, 1025-1034.	3.6	55
45	Increased cytoplasmic level of migfilin is associated with higher grades of human leiomyosarcoma. Histopathology, 2007, 51, 499-508.	1.6	24
46	Migfilin Interacts with Vasodilator-stimulated Phosphoprotein (VASP) and Regulates VASP Localization to Cell-Matrix Adhesions and Migration. Journal of Biological Chemistry, 2006, 281, 12397-12407.	1.6	57
47	Physical and functional association of migfilin with cell-cell adhesions. Journal of Cell Science, 2005, 118, 697-710.	1.2	42
48	Assembly and Signaling of Adhesion Complexes. Current Topics in Developmental Biology, 2005, 68, 183-225.	1.0	45
49	A standardized protocol for the isolation and culture of normal and arthritogenic murine synovial fibroblasts. Protocol Exchange, 0, , .	0.3	34