Suzana P Nunes

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4152657/suzana-p-nunes-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 276
 10,009
 53
 87

 papers
 citations
 h-index
 g-index

 293
 11,319
 7.1
 6.72

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
276	Rapid fabrication of fluorinated covalent organic polymer membranes for organic solvent nanofiltration. <i>Journal of Membrane Science</i> , 2022 , 648, 120345	9.6	3
275	Thermal treatment of hydroxyl functionalized polytriazole and its effect on gas transport: From crosslinking to carbon molecular sieve. <i>Journal of Membrane Science</i> , 2022 , 642, 119963	9.6	2
274	Production of sub-10 micrometre cellulose microbeads using isoporous membranes 2022 , 2, 100024		1
273	Polytriazole membranes with ultrathin tunable selective layer for crude oil fractionation. <i>Science</i> , 2022 , 376, 1105-1110	33.3	5
272	Recent advances in polymer membranes employing non-toxic solvents and materials. <i>Green Chemistry</i> , 2021 , 23, 9815-9843	10	14
271	Zwitterionic Triamine Monomer for the Fabrication of Thin-Film Composite Membranes. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 583-592	3.9	3
270	Microfluidic Integrated Organic Electrochemical Transistor with a Nanoporous Membrane for Amyloid-Detection. <i>ACS Nano</i> , 2021 , 15, 8130-8141	16.7	18
269	Strategies for Integrated Capture and Conversion of CO from Dilute Flue Gases and the Atmosphere. <i>ChemSusChem</i> , 2021 , 14, 1805-1820	8.3	15
268	An Assistive Magnetic Skin System: Enabling Technology for Quadriplegics. <i>Advanced Engineering Materials</i> , 2021 , 23, 2000944	3.5	3
267	Biomimetic artificial water channel membranes for enhanced desalination. <i>Nature Nanotechnology</i> , 2021 , 16, 190-196	28.7	51
266	Fluorescence-assisted real-time study of magnetically immobilized enzyme stability in a crossflow membrane bioreactor. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 610, 125	687 ¹	
265	Green solvents for membrane manufacture: Recent trends and perspectives. <i>Current Opinion in Green and Sustainable Chemistry</i> , 2021 , 28, 100427	7.9	15
264	Hydrophobic thin film composite nanofiltration membranes derived solely from sustainable sources. <i>Green Chemistry</i> , 2021 , 23, 1175-1184	10	35
263	Flexible isoporous air filters for high-efficiency particle capture. <i>Polymer</i> , 2021 , 213, 123278	3.9	2
262	Block Copolymer-Based Magnetic Mixed Matrix Membranes-Effect of Magnetic Field on Protein Permeation and Membrane Fouling. <i>Membranes</i> , 2021 , 11,	3.8	6
261	Relative Importance of Stochastic Assembly Process of Membrane Biofilm Increased as Biofilm Aged. <i>Frontiers in Microbiology</i> , 2021 , 12, 708531	5.7	1
260	Tunable membranes incorporating artificial water channels for high-performance brackish/low-salinity water reverse osmosis desalination. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	4

(2020-2021)

259	Enzyme catalysis coupled with artificial membranes towards process intensification in biorefinery- a review. <i>Bioresource Technology</i> , 2021 , 335, 125248	11	6
258	Naturally Extracted Hydrophobic Solvent and Self-Assembly in Interfacial Polymerization. <i>ACS Applied Materials & Description of </i>	9.5	1
257	Fluorinated thin-film composite membranes for nonpolar organic solvent nanofiltration. <i>Separation and Purification Technology</i> , 2021 , 279, 119777	8.3	3
256	Engineering membranes with macrocycles for precise molecular separations. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 18102-18128	13	1
255	Green Synthesis of Thin-Film Composite Membranes for Organic Solvent Nanofiltration. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 11541-11548	8.3	22
254	Spray-coated graphene oxide hollow fibers for nanofiltration. <i>Journal of Membrane Science</i> , 2020 , 606, 118006	9.6	12
253	Hierarchically porous electrospun nanofibrous mats produced from intrinsically microporous fluorinated polyimide for the removal of oils and non-polar solvents. <i>Environmental Science: Nano</i> , 2020 , 7, 1365-1372	7.1	33
252	Exploration of the Synergy Between 2D Nanosheets and a Non-2D Filler in Mixed Matrix Membranes for Gas Separation. <i>Frontiers in Chemistry</i> , 2020 , 8, 58	5	9
251	Enhanced CO2 separation in membranes with anion-cation dual pathways. <i>Journal of CO2 Utilization</i> , 2020 , 38, 355-365	7.6	5
250	Two-dimensional nanochannel membranes for molecular and ionic separations. <i>Chemical Society Reviews</i> , 2020 , 49, 1071-1089	58.5	103
250 249			103
	Reviews, 2020 , 49, 1071-1089		
249	Reviews, 2020, 49, 1071-1089 Can fouling in membranes be ever defeated?. Current Opinion in Chemical Engineering, 2020, 28, 90-95 Oriented Zeolitic Imidazolate Framework (ZIF) Nanocrystal Films for Molecular Separation	5.4	20
249	Reviews, 2020, 49, 1071-1089 Can fouling in membranes be ever defeated?. Current Opinion in Chemical Engineering, 2020, 28, 90-95 Oriented Zeolitic Imidazolate Framework (ZIF) Nanocrystal Films for Molecular Separation Membranes. ACS Applied Nano Materials, 2020, 3, 3839-3846	5.4 5.6	20
249 248 247	Can fouling in membranes be ever defeated?. <i>Current Opinion in Chemical Engineering</i> , 2020 , 28, 90-95 Oriented Zeolitic Imidazolate Framework (ZIF) Nanocrystal Films for Molecular Separation Membranes. <i>ACS Applied Nano Materials</i> , 2020 , 3, 3839-3846 Nanofabrication of Isoporous Membranes for Cell Fractionation. <i>Scientific Reports</i> , 2020 , 10, 6138 Organic solvent and thermal resistant polytriazole membranes with enhanced mechanical	5.4 5.6 4.9	20 9 13
249 248 247 246	Can fouling in membranes be ever defeated?. <i>Current Opinion in Chemical Engineering</i> , 2020 , 28, 90-95 Oriented Zeolitic Imidazolate Framework (ZIF) Nanocrystal Films for Molecular Separation Membranes. <i>ACS Applied Nano Materials</i> , 2020 , 3, 3839-3846 Nanofabrication of Isoporous Membranes for Cell Fractionation. <i>Scientific Reports</i> , 2020 , 10, 6138 Organic solvent and thermal resistant polytriazole membranes with enhanced mechanical properties cast from solutions in non-toxic solvents. <i>Journal of Membrane Science</i> , 2020 , 597, 117634 Ultrathin 2D-Layered Cyclodextrin Membranes for High- Performance Organic Solvent	5.4 5.6 4.9 9.6	20 9 13
249 248 247 246 245	Can fouling in membranes be ever defeated?. <i>Current Opinion in Chemical Engineering</i> , 2020 , 28, 90-95 Oriented Zeolitic Imidazolate Framework (ZIF) Nanocrystal Films for Molecular Separation Membranes. <i>ACS Applied Nano Materials</i> , 2020 , 3, 3839-3846 Nanofabrication of Isoporous Membranes for Cell Fractionation. <i>Scientific Reports</i> , 2020 , 10, 6138 Organic solvent and thermal resistant polytriazole membranes with enhanced mechanical properties cast from solutions in non-toxic solvents. <i>Journal of Membrane Science</i> , 2020 , 597, 117634 Ultrathin 2D-Layered Cyclodextrin Membranes for High- Performance Organic Solvent Nanofiltration. <i>Advanced Functional Materials</i> , 2020 , 30, 1906797 Thinking the future of membranes: Perspectives for advanced and new membrane materials and	5.4 5.6 4.9 9.6	20 9 13 14 50

241	Hollow Fibers with Encapsulated Green Amino Acid-Based Ionic Liquids for Dehydration. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 17763-17771	8.3	9
240	NEXARTM-coated hollow fibers for air dehumidification. <i>Journal of Membrane Science</i> , 2020 , 614, 11845	5 0 .6	9
239	Carbon Quantum Dot-Enabled Tuning of the Microphase Structures of Poly(ether-b-amide) Membrane for CO2 Separation. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 14960-14969	3.9	7
238	Smart covalent organic networks (CONs) with "on-off-on" light-switchable pores for molecular separation. <i>Science Advances</i> , 2020 , 6, eabb3188	14.3	23
237	Preparation of PEEK Membranes with Excellent Stability Using Common Organic Solvents. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 5218-5226	3.9	11
236	Block Copolymer Membranes 2020 , 297-316		6
235	â∐inking microstructure of membranes and performanceâ∏ <i>Journal of Membrane Science</i> , 2020 , 594, 117	4510	7
234	Cellulose hollow fibers for organic resistant nanofiltration. <i>Journal of Membrane Science</i> , 2019 , 586, 151	1- 3.6 1	31
233	Hollow fibre membrane-based liquid desiccant humidity control for controlled environment agriculture. <i>Biosystems Engineering</i> , 2019 , 183, 47-57	4.8	9
232	High flux membranes, based on self-assembled and H-bond linked triblock copolymer nanospheres. Journal of Membrane Science, 2019 , 585, 10-18	9.6	9
231	Interfacial Polymerization of Zwitterionic Building Blocks for High-Flux Nanofiltration Membranes. <i>Langmuir</i> , 2019 , 35, 1284-1293	4	49
230	An organic electrochemical transistor integrated with a molecularly selective isoporous membrane for amyloid-lidetection. <i>Biosensors and Bioelectronics</i> , 2019 , 143, 111561	11.8	23
229	Recycled Poly(ethylene terephthalate) for High Temperature Solvent Resistant Membranes. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 2379-2387	4.3	32
228	3D Analysis of Ordered Porous Polymeric Particles using Complementary Electron Microscopy Methods. <i>Scientific Reports</i> , 2019 , 9, 13987	4.9	10
227	2D-dual-spacing channel membranes for high performance organic solvent nanofiltration. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 11673-11682	13	53
226	Cyclodextrin polymer networks decorated with subnanometer metal nanoparticles for high-performance low-temperature catalysis. <i>Science Advances</i> , 2019 , 5, eaax6976	14.3	24
225	Stable Graphene Oxide Cross-Linked Membranes for Organic Solvent Nanofiltration. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 23106-23113	3.9	15
224	Fabrication of Hollow Fiber Membranes Using Highly Viscous Liquids as Internal Coagulants. Industrial & Engineering Chemistry Research, 2019, 58, 22343-22349	3.9	4

(2018-2019)

223	Diffusion-induced in situ growth of covalent organic frameworks for composite membranes. Journal of Materials Chemistry A, 2019 , 7, 25802-25807	13	14
222	Highways for water molecules: Interplay between nanostructure and water vapor transport in block copolymer membranes. <i>Journal of Membrane Science</i> , 2019 , 572, 641-649	9.6	31
221	OilâWater Separation using Membranes Manufactured from Cellulose/Ionic Liquid Solutions. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 5649-5659	8.3	30
220	Vacuum membrane distillation of liquid desiccants utilizing hollow fiber membranes. <i>Separation and Purification Technology</i> , 2018 , 199, 57-63	8.3	26
219	Post modification of acetylene functional poly(oxindole biphenylylene) by photoinduced CuAAC. <i>European Polymer Journal</i> , 2018 , 100, 298-307	5.2	7
218	Polyoxadiazole hollow fibers for produced water treatment by direct contact membrane distillation. <i>Desalination</i> , 2018 , 432, 32-39	10.3	27
217	Thin porphyrin composite membranes with enhanced organic solvent transport. <i>Journal of Membrane Science</i> , 2018 , 563, 684-693	9.6	19
216	Electrochemically active polymeric hollow fibers based on poly(ether-b-amide)/carbon nanotubes. <i>Journal of Membrane Science</i> , 2018 , 545, 323-328	9.6	9
215	Functionalized Nanochannels from Self-Assembled and Photomodified Poly(Styrene-b-Butadiene-b-Styrene). <i>Small</i> , 2018 , 14, e1701885	11	16
214	Solvent and thermal resistant ultrafiltration membranes from alkyne-functionalized high-performance polymers. <i>Journal of Membrane Science</i> , 2018 , 564, 361-371	9.6	26
213	Carboxyl-functionalized nanochannels based on block copolymer hierarchical structures. <i>Faraday Discussions</i> , 2018 , 209, 303-314	3.6	4
212	Nanochannels: Functionalized Nanochannels from Self-Assembled and Photomodified Poly(Styrene-b-Butadiene-b-Styrene) (Small 18/2018). <i>Small</i> , 2018 , 14, 1870083	11	
211	Artificial 3D hierarchical and isotropic porous polymeric materials. <i>Science Advances</i> , 2018 , 4, eaat0713	14.3	28
210	Cell-element simulations to optimize the performance of osmotic processes in porous membranes. <i>Computers and Mathematics With Applications</i> , 2018 , 76, 361-376	2.7	2
209	Self-assembly of polystyrene- b -poly(2-vinylpyridine)- b -poly(ethylene oxide) triblock terpolymers. <i>European Polymer Journal</i> , 2018 , 100, 121-131	5.2	9
208	Self-Assembled Membranes with Featherlike and Lamellar Morphologies Containing Helical Polypeptides. <i>Macromolecules</i> , 2018 , 51, 8174-8187	5.5	9
207	Graphene Oxide Liquid Crystal Membranes in Protic Ionic Liquid for Nanofiltration. <i>ACS Applied Nano Materials</i> , 2018 , 1, 4661-4670	5.6	16
206	Applications to water transport systems: general discussion. <i>Faraday Discussions</i> , 2018 , 209, 389-414	3.6	3

205	Membranes prepared by self-assembly and chelation assisted phase inversion. <i>Chemical Communications</i> , 2017 , 53, 6609-6612	5.8	11
204	Polyethersulfone flat sheet and hollow fiber membranes from solutions in ionic liquids. <i>Journal of Membrane Science</i> , 2017 , 539, 161-171	9.6	20
203	How Do Polyethylene Glycol and Poly(sulfobetaine) Hydrogel Layers on Ultrafiltration Membranes Minimize Fouling and Stay Stable in Cleaning Chemicals?. <i>Industrial & Discourse Chemistry Research</i> , 2017 , 56, 6785-6795	3.9	22
202	Porous polymeric membranes with thermal and solvent resistance. <i>Journal of Membrane Science</i> , 2017 , 539, 187-196	9.6	37
201	Ethylene glycol as bore fluid for hollow fiber membrane preparation. <i>Journal of Membrane Science</i> , 2017 , 533, 171-178	9.6	14
200	Highly porous polytriazole ion exchange membranes cast from solutions in non-toxic cosolvents. <i>Polymer</i> , 2017 , 126, 446-454	3.9	2
199	Crosslinked polytriazole membranes for organophilic filtration. <i>Journal of Membrane Science</i> , 2017 , 528, 264-272	9.6	18
198	Activation of PVDF membranes through facile hydroxylation of the polymeric dope. <i>Journal of Materials Research</i> , 2017 , 32, 4219-4231	2.5	7
197	Evolution of regular geometrical shapes in fiber lumens. Scientific Reports, 2017, 7, 9171	4.9	7
196	Polyethersulfone/Graphene Oxide Ultrafiltration Membranes from Solutions in Ionic Liquid. <i>MRS Advances</i> , 2017 , 2, 2505-2511	0.7	3
195	Thin Film Polyamide Membranes with Photoresponsive Antibacterial Activity. <i>ChemistrySelect</i> , 2017 , 2, 6612-6616	1.8	5
194	Poly(ether imide sulfone) Membranes from Solutions in Ionic Liquids. <i>Industrial & amp; Engineering Chemistry Research</i> , 2017 , 56, 14914-14922	3.9	11
193	Dendrimeric Thin-Film Composite Membranes: Free Volume, Roughness, and Fouling Resistance. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 14337-14349	3.9	11
192	Hollow fiber membrane lumen modified by polyzwitterionic grafting. <i>Journal of Membrane Science</i> , 2017 , 522, 1-11	9.6	35
191	Fabrication of polyacrylonitrile hollow fiber membranes from ionic liquid solutions. <i>Polymer Chemistry</i> , 2016 , 7, 113-124	4.9	29
190	Photoresponsive nanostructured membranes. <i>RSC Advances</i> , 2016 , 6, 75594-75601	3.7	6
189	Antibiofilm effect enhanced by modification of 1,2,3-triazole and palladium nanoparticles on polysulfone membranes. <i>Scientific Reports</i> , 2016 , 6, 24289	4.9	16
188	3D morphology design for forward osmosis. <i>Journal of Membrane Science</i> , 2016 , 516, 172-184	9.6	5

(2016-2016)

187	Design of block copolymer membranes using segregation strength trend lines. <i>Molecular Systems Design and Engineering</i> , 2016 , 1, 278-289	4.6	19
186	Membrane manufacture for peptide separation. <i>Green Chemistry</i> , 2016 , 18, 5151-5159	10	33
185	Liquid desiccant dehumidification and regeneration process to meet cooling and freshwater needs of desert greenhouses. <i>Desalination and Water Treatment</i> , 2016 , 57, 23430-23442		17
184	Outer-selective thin film composite (TFC) hollow fiber membranes for osmotic power generation. Journal of Membrane Science, 2016 , 505, 157-166	9.6	39
183	3D Membrane Imaging and Porosity Visualization. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 3689-3695	3.9	16
182	Temporal changes in extracellular polymeric substances on hydrophobic and hydrophilic membrane surfaces in a submerged membrane bioreactor. <i>Water Research</i> , 2016 , 95, 27-38	12.5	33
181	Block Copolymer Membranes for Aqueous Solution Applications. <i>Macromolecules</i> , 2016 , 49, 2905-2916	5.5	166
180	Recent membrane development for pervaporation processes. <i>Progress in Polymer Science</i> , 2016 , 57, 1-3	129.6	318
179	Materials and membrane technologies for water and energy sustainability. <i>Sustainable Materials and Technologies</i> , 2016 , 7, 1-28	5.3	227
178	Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination. <i>Water Research</i> , 2016 , 88, 337-345	12.5	41
177	Polymer and Membrane Design for Low Temperature Catalytic Reactions. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 700-4	4.8	13
176	Synthesis of highly porous poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) asymmetric membranes. <i>Polymer Chemistry</i> , 2016 , 7, 3076-3089	4.9	23
175	Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification. Journal of Membrane Science, 2016 , 514, 135-142	9.6	31
174	In situ growth of biocidal AgCl crystals in the top layer of asymmetric polytriazole membranes. <i>RSC Advances</i> , 2016 , 6, 46696-46701	3.7	11
173	Dual-skinned polyamide/poly(vinylidene fluoride)/cellulose acetate membranes with embedded woven. <i>Journal of Membrane Science</i> , 2016 , 520, 840-849	9.6	18
172	The effects of a co-solvent on fabrication of cellulose acetate membranes from solutions in 1-ethyl-3-methylimidazolium acetate. <i>Journal of Membrane Science</i> , 2016 , 520, 540-549	9.6	26
171	A Microfiltration Polymer-Based Hollow-Fiber Cathode as a Promising Advanced Material for Simultaneous Recovery of Energy and Water. <i>Advanced Materials</i> , 2016 , 28, 9504-9511	24	25
170	Artificial membranes with selective nanochannels for protein transport. <i>Polymer Chemistry</i> , 2016 , 7, 618	3 2.6 20	117

169	Ionic liquids as self-assembly guide for the formation of nanostructured block copolymer membranes. <i>Journal of Membrane Science</i> , 2015 , 492, 568-577	9.6	30
168	Topology and Shape Control for Assemblies of Block Copolymer Blends in Solution. <i>Macromolecules</i> , 2015 , 48, 8036-8044	5.5	17
167	Hydrophobic Hyflon AD/Poly(vinylidene fluoride) Membranes for Butanol Dehydration via Pervaporation. <i>Industrial & Dehydration Chemistry Research</i> , 2015 , 54, 11180-11187	3.9	21
166	Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration. <i>Angewandte Chemie</i> , 2015 , 127, 14143-14147	3.6	11
165	Consistent model reduction of polymer chains in solution in dissipative particle dynamics: Model description. <i>Computer Physics Communications</i> , 2015 , 196, 255-266	4.2	2
164	Crosslinked copolyazoles with a zwitterionic structure for organic solvent resistant membranes. <i>Polymer Chemistry</i> , 2015 , 6, 543-554	4.9	42
163	Low fouling polysulfone ultrafiltration membrane via click chemistry. <i>Journal of Applied Polymer Science</i> , 2015 , 132, n/a-n/a	2.9	16
162	Synthesis and characterization of polystyrene coated iron oxide nanoparticles and asymmetric assemblies by phase inversion. <i>Journal of Applied Polymer Science</i> , 2015 , 132, n/a-n/a	2.9	7
161	Innentitelbild: Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration (Angew. Chem. 47/2015). <i>Angewandte Chemie</i> , 2015 , 127, 14030-14030	3.6	1
160	Hollow ZIF-8 Nanoworms from Block Copolymer Templates. <i>Scientific Reports</i> , 2015 , 5, 15275	4.9	24
159	Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13937-41	16.4	101
158	Cellulose multilayer membranes manufacture with ionic liquid. <i>Journal of Membrane Science</i> , 2015 , 490, 282-293	9.6	63
157	Water flow prediction for membranes using 3D simulations with detailed morphology. <i>Journal of Membrane Science</i> , 2015 , 487, 19-31	9.6	14
156	Hydroxyl functionalized polytriazole-co-polyoxadiazole as substrates for forward osmosis membranes. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 3960-73	9.5	78
155	Performance evaluation of the DCMD desalination process under bench scale and large scale module operating conditions. <i>Journal of Membrane Science</i> , 2014 , 455, 103-112	9.6	89
154	PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation. <i>Journal of Materials Science</i> , 2014 , 49, 2045-2053	4.3	41
153	Self-Assembled Isoporous Block Copolymer Membranes with Tuned Pore Sizes. <i>Angewandte Chemie</i> , 2014 , 126, 10236-10240	3.6	19
152	Reactive phase inversion for manufacture of asymmetric poly (ether imide sulfone) membranes. <i>Reactive and Functional Polymers</i> , 2014 , 85, 1-10	4.6	2

(2013-2014)

151	Self-assembled isoporous block copolymer membranes with tuned pore sizes. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 10072-6	16.4	75
150	Porous asymmetric SiO2-g-PMMA nanoparticles produced by phase inversion. <i>Journal of Materials Science</i> , 2014 , 49, 7399-7407	4.3	7
149	Silver-enhanced block copolymer membranes with biocidal activity. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 18497-501	9.5	52
148	Block copolymer/homopolymer dual-layer hollow fiber membranes. <i>Journal of Membrane Science</i> , 2014 , 472, 39-44	9.6	31
147	Time-resolved GISAXS and cryo-microscopy characterization of block copolymer membrane formation. <i>Polymer</i> , 2014 , 55, 1327-1332	3.9	46
146	Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity. <i>Nature Communications</i> , 2014 , 5, 4110	17.4	106
145	Restrictions in Model Reduction for Polymer Chain Models in Dissipative Particle Dynamics. <i>Procedia Computer Science</i> , 2014 , 29, 728-739	1.6	2
144	Nafion /ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells. <i>Journal of Power Sources</i> , 2014 , 246, 950-959	8.9	28
143	Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation. <i>Journal of Membrane Science</i> , 2014 , 453, 471-477	9.6	67
142	A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment. <i>Environmental Science & Environmental Scienc</i>	10.3	124
141	Self-assembly in casting solutions of block copolymer membranes. Soft Matter, 2013, 9, 5557	3.6	88
140	Complexation-tailored morphology of asymmetric block copolymer membranes. <i>ACS Applied Materials & Complex Action & Co</i>	9.5	61
139	Block copolymer hollow fiber membranes with catalytic activity and pH-response. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & ACS Applied</i>	9.5	62
138	Porous polyoxadiazole membranes for harsh environment. <i>Journal of Membrane Science</i> , 2013 , 445, 127	7-9.34	21
137	Selective separation of similarly sized proteins with tunable nanoporous block copolymer membranes. <i>ACS Nano</i> , 2013 , 7, 768-76	16.7	202
136	Polyazole Hollow Fiber Membranes for Direct Contact Membrane Distillation. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 10425-10429	3.9	42
135	From Charge-Mosaic to Micelle Self-Assembly: Block Copolymer Membranes in the Last 40 Years. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 993-1003	3.9	82
134	Fabrication of electrospun nanofibrous membranes for membrane distillation application. Desalination and Water Treatment, 2013, 51, 1337-1343		41

133	Self-assembled block copolymer membranes: From basic research to large-scale manufacturing. Journal of Materials Research, 2013 , 28, 2661-2665	2.5	22
132	Synthesis and fabrication of nanostructured hydrophobic polyazole membranes for low-energy water recovery. <i>Journal of Membrane Science</i> , 2012 , 423-424, 11-19	9.6	93
131	Solution Small-Angle X-ray Scattering as a Screening and Predictive Tool in the Fabrication of Asymmetric Block Copolymer Membranes. <i>ACS Macro Letters</i> , 2012 , 1, 614-617	6.6	87
130	From micelle supramolecular assemblies in selective solvents to isoporous membranes. <i>Langmuir</i> , 2011 , 27, 10184-90	4	92
129	Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly. <i>ACS Nano</i> , 2011 , 5, 3516-22	16.7	241
128	Poly(acrylic acid-co-4-vinylimidazole)/Sulfonated poly(ether ether ketone) blend membranes: A role of polymer chain with proton acceptor and donor for enhancing proton transfer in anhydrous system. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 10384-10391	6.7	24
127	Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes. <i>Journal of Power Sources</i> , 2011 , 196, 911-919	8.9	43
126	Ultraporous Films with Uniform Nanochannels by Block Copolymer Micelles Assembly. <i>Macromolecules</i> , 2010 , 43, 8079-8085	5.5	182
125	CO2-Philic Polymer Membrane with Extremely High Separation Performance. <i>Macromolecules</i> , 2010 , 43, 326-333	5.5	252
124	Stability of sulfonated polytriazole and polyoxadiazole membranes. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2010 , 5, 235-241	1.3	13
123	Quaternary ammonium membrane materials for CO2 separation. <i>Journal of Membrane Science</i> , 2010 , 359, 44-53	9.6	72
122	Syndiotactic polypropylene copolymer membranes and their performance for oxygen separation. <i>Journal of Membrane Science</i> , 2010 , 348, 34-40	9.6	5
121	Modified SPEEK membranes for direct ethanol fuel cell. <i>Journal of Power Sources</i> , 2010 , 195, 4036-4042	! 8.9	43
120	Proton conductive membranes based on doped sulfonated polytriazole. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 12054-12064	6.7	14
119	SPEEK/Polyimide Blends for Proton Conductive MembranesPresented at the 1st CARISMA Conference, Progress MEA 2008, La Grande Motte, 21stâØ4th September 2008 <i>Fuel Cells</i> , 2009 , 9, 401-	-409	14
118	Investigation of the role of benzimidazole-based model compounds on thermal stability and anhydrous proton conductivity of sulfonated poly(ether ether ketone). <i>Solid State Ionics</i> , 2009 , 180, 738	3-3745	23
117	Preparation and characterization of bilayer carbon/polymer membranes. <i>Journal of Membrane Science</i> , 2009 , 326, 27-35	9.6	12
116	Analysis of proton-conducting organicalihorganic hybrid materials based on sulphonated poly(ether ether ketone) and phosphotungstic acid via ASAXS and WAXS. <i>Journal of Non-Crystalline Solids</i> , 2009 , 355, 6-11	3.9	4

(2007-2008)

Non-Fluorinated Membranes Thickness Effect on the DMFC Performance. <i>Separation Science and Technology</i> , 2008 , 43, 1917-1932	2.5	3
Organic-Inorganic Membranes. <i>Membrane Science and Technology</i> , 2008 , 13, 121-134		5
An Impedance Study on the sPEEK/ZrO2 Membranes for Direct Methanol Fuel Cell Applications. <i>Materials Science Forum</i> , 2008 , 587-588, 926-930	0.4	3
Thermal degradation of polyetherimide joined by friction riveting (FricRiveting). Part I: Influence of rotation speed. <i>Polymer Degradation and Stability</i> , 2008 , 93, 1529-1538	4.7	61
Proton Conducting Membranes Based on Benzimidazole Sulfonic Acid Doped Sulfonated Poly(Oxadiazoleâllriazole) Copolymer for Low Humidity Operation. <i>Fuel Cells</i> , 2008 , 8, 209-216	2.9	22
Preparation of 4(5)-vinylimidazole-co-acrylic acid copolymer and thermal performances related to applicability as PEM fuel cells. <i>Polymer Degradation and Stability</i> , 2008 , 93, 1389-1395	4.7	16
Sulfonated polynaphthalimides with benzimidazole pendant groups. <i>Polymer</i> , 2008 , 49, 3875-3883	3.9	38
One-pot synthesis of high molecular weight sulfonated poly(oxadiazoleâEriazole) copolymers for proton conductive membranes. <i>Journal of Membrane Science</i> , 2008 , 319, 14-22	9.6	27
Development of polyoxadiazole nanocomposites for high temperature polymer electrolyte membrane fuel cells. <i>Journal of Membrane Science</i> , 2008 , 322, 406-415	9.6	37
Sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs). <i>Journal of Membrane Science</i> , 2008 , 323, 337-346	9.6	118
Single-step synthesis of sulfonated polyoxadiazoles and their use as proton conducting membranes. <i>Journal of Power Sources</i> , 2008 , 175, 49-59	8.9	48
Fluorinated polyoxadiazole for high-temperature polymer electrolyte membrane fuel cells. <i>Journal of Membrane Science</i> , 2008 , 321, 114-122	9.6	34
Catalytically active CNTâpolymer-membrane assemblies: From synthesis to application. <i>Journal of Membrane Science</i> , 2008 , 321, 123-130	9.6	37
Modification of proton conductive polymer membranes with phosphonated polysilsesquioxanes. <i>Journal of Membrane Science</i> , 2008 , 325, 559-569	9.6	25
COMPOSITE MEMBRANES WITH CROSS-LINKED MATRIMID SELECTIVE LAYER FOR GAS SEPARATION. <i>Environmental Engineering and Management Journal</i> , 2008 , 7, 653-659	0.6	16
Organic-Inorganic Membranes for Fuel Cell Application 2008 , 1-12		
Pre-treatment Effect on the Sulfonated Poly(ether ether ketone) Membrane Transport Properties and Direct Methanol Fuel Cell Performance. <i>Separation Science and Technology</i> , 2007 , 42, 2909-2925	2.5	5
Protonation of Sulfonated Poly(4,4?-diphenylether-1,3,4-oxadiazole) Membranes. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 467-473	2.6	16
	Organic-Inorganic Membranes. Membrane Science and Technology, 2008, 13, 121-134 An Impedance Study on the SPEEK/ZrO2 Membranes for Direct Methanol Fuel Cell Applications. Materials Science Forum, 2008, 587-588, 926-930 Thermal degradation of polyetherimide joined by friction riveting (FricRiveting). Part I: Influence of rotation speed. Polymer Degradation and Stability, 2008, 93, 1529-1538 Proton Conducting Membranes Based on Benzimidazole Sulfonic Acid Doped Sulfonated Poly(OxadiazoleālTriazole) Copolymer for Low Humidity Operation. Fuel Cells, 2008, 8, 209-216 Preparation of 4(5)-vinylimidazole-co-acrylic acid copolymer and thermal performances related to applicability as PEM fuel cells. Polymer Degradation and Stability, 2008, 93, 1389-1395 Sulfonated polynaphthalimides with benzimidazole pendant groups. Polymer, 2008, 49, 3875-3883 One-pot synthesis of high molecular weight sulfonated poly(oxadiazoleāfriazole) copolymers for proton conductive membranes. Journal of Membrane Science, 2008, 319, 14-22 Development of polyoxadiazole nanocomposites for high temperature polymer electrolyte membrane fuel cells. Journal of Membrane Science, 2008, 322, 406-415 Sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs). Journal of Membrane Science, 2008, 323, 337-346 Single-step synthesis of sulfonated polyoxadiazoles and their use as proton conducting membranes. Journal of Power Sources, 2008, 175, 49-59 Fluorinated polyoxadiazole for high-temperature polymer electrolyte membrane fuel cells. Journal of Membrane Science, 2008, 321, 114-122 Catalytically active CNTāpolymer-membrane assemblies: From synthesis to application. Journal of Membrane Science, 2008, 321, 123-130 Modification of proton conductive polymer membranes with phosphonated polysilsesquioxanes. Journal of Membrane Science, 2008, 325, 559-569 Composite Membrane Science, 2008, 321, 123-130 Pre-treatment Effect on the Sulfonated Poly(ether ether ketone) Membrane Tr	Organic-Inorganic Membranes. Membrane Science and Technology, 2008, 13, 121-134 An Impedance Study on the sPEEK/ZrO2 Membranes for Direct Methanol Fuel Cell Applications. Materials Science Forum, 2008, 587-588, 926-930 Thermal degradation of polyetherimide joined by friction riveting (FricRiveting). Part I: Influence of rotation speed. Polymer Degradation and Stability, 2008, 93, 1529-1538 Proton Conducting Membranes Based on Benzimidazole Sulfonic Acid Doped Sulfonated Poly(OxadiazolealIriazole) Copplymer for Low Humidity Operation. Fuel Cells, 2008, 8, 209-216 Preparation of 4(5)-vinylimidazole-co-acrylic acid copolymer and thermal performances related to applicability as PEM fuel cells. Polymer Degradation and Stability, 2008, 93, 1389-1395 47 Sulfonated polynaphthalimides with benzimidazole pendant groups. Polymer, 2008, 49, 3875-3883 One-pot synthesis of high molecular weight sulfonated poly(oxadiazolealtriazole) copolymers for proton conductive membranes. Journal of Membrane Science, 2008, 319, 14-22 Development of polyoxadiazole nanocomposites for high temperature polymer electrolyte membrane fuel cells. Journal of Membrane Science, 2008, 322, 406-415 Sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs). Journal of Membrane Science, 2008, 323, 337-346 Single-step synthesis of sulfonated polyoxadiazoles and their use as proton conducting membranes. Journal of Power Sources, 2008, 175, 49-59 Fluorinated polyoxadiazole for high-temperature polymer electrolyte membrane fuel cells. Journal of Membrane Science, 2008, 321, 114-122 Catalytically active CNTāpolymer-membrane assemblies: From synthesis to application. Journal of Membrane Science, 2008, 321, 123-130 Modification of proton conductive polymer membranes with phosphonated polysilsesquioxanes. Journal of Membrane Science, 2008, 321, 114-122 Catalytically active CNTāpolymer-membrane assemblies: From synthesis to application. Journal of Membrane Science, 2008

97	Synthesis and Properties of Novel Polyimides Bearing Sulfonated Benzimidazole Pendant Groups. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 616-622	4.8	22
96	KrytoxâMontmorilloniteâNafion nanocomposite membrane for effective methanol crossover reduction in DMFCs. <i>Solid State Ionics</i> , 2007 , 178, 1627-1635	3.3	33
95	Characterization of partially sulfonated polyoxadiazoles and oxadiazoleâlriazole copolymers. Journal of Membrane Science, 2007 , 295, 121-129	9.6	53
94	Organic-inorganic membranes for gas separation. <i>Annales De Chimie: Science Des Materiaux</i> , 2007 , 32, 119-126	2.1	6
93	Phosphonated and sulfonated polyhphenylsulfone membranes for fuel cell application. <i>Journal of Membrane Science</i> , 2006 , 285, 206-213	9.6	34
92	Permeability and Conductivity Studies on Ionomer-Polysilsesquioxane Hybrid Materials. <i>Macromolecular Chemistry and Physics</i> , 2006 , 207, 336-341	2.6	23
91	Developments in Membrane Research: from Material via Process Design to Industrial Application. <i>Advanced Engineering Materials</i> , 2006 , 8, 328-358	3.5	194
90	Barrier Properties of Poly(benzimidazole)-Layered Silicates Nanocomposite Materials. <i>Advanced Engineering Materials</i> , 2006 , 8, 1010-1015	3.5	12
89	Membrane Preparation 2006 , 9-14		2
88	Membranen ffidie Brennstoffzelle 2006 , 453-467		
88 87	Membranen fildie Brennstoffzelle 2006 , 453-467 Presently Available Membranes for Liquid Separation 2006 , 15-38		1
			1 2
87	Presently Available Membranes for Liquid Separation 2006 , 15-38		
8 ₇ 86	Presently Available Membranes for Liquid Separation 2006 , 15-38 Gas Separation with Membranes 2006 , 53-90	2.6	2
87 86 85	Presently Available Membranes for Liquid Separation 2006, 15-38 Gas Separation with Membranes 2006, 53-90 Polymermembranen 2006, 1-21 Sulfonated silica-based electrolyte nanocomposite membranes. <i>Journal of Polymer Science, Part B:</i>	2.6	1
87 86 85 84	Presently Available Membranes for Liquid Separation 2006, 15-38 Gas Separation with Membranes 2006, 53-90 Polymermembranen 2006, 1-21 Sulfonated silica-based electrolyte nanocomposite membranes. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2006, 44, 2278-2298 Comparison of asymmetric and thin-film composite membranes having Matrimid 5218 selective		2 1 34
87 86 85 84 83	Presently Available Membranes for Liquid Separation 2006, 15-38 Gas Separation with Membranes 2006, 53-90 Polymermembranen 2006, 1-21 Sulfonated silica-based electrolyte nanocomposite membranes. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2006, 44, 2278-2298 Comparison of asymmetric and thin-film composite membranes having Matrimid 5218 selective layer. <i>Desalination</i> , 2006, 199, 193-194	10.3	2 1 34 7

(2005-2006)

79	Mass transport of direct methanol fuel cell species in sulfonated poly(ether ether ketone) membranes. <i>Electrochimica Acta</i> , 2006 , 51, 3699-3706	6.7	46
78	Proton exchange membranes for direct methanol fuel cells: Properties critical study concerning methanol crossover and proton conductivity. <i>Journal of Membrane Science</i> , 2006 , 276, 126-134	9.6	22
77	Mixed conductive membrane: Aniline polymerization in an acid SPEEK matrix. <i>Journal of Membrane Science</i> , 2006 , 279, 70-75	9.6	25
76	Gas transport properties of segmented poly(ether siloxane urethane urea) membranes. <i>Journal of Membrane Science</i> , 2006 , 281, 747-753	9.6	37
75	Zirconium oxide hybrid membranes for direct methanol fuel cellsâ E valuation of transport properties. <i>Journal of Membrane Science</i> , 2006 , 284, 137-144	9.6	54
74	Organic modification of layered silicates: structural and thermal characterizations. <i>Journal of Non-Crystalline Solids</i> , 2005 , 351, 970-975	3.9	29
73	SAXS/WAXS characterization of proton-conducting polymer membranes containing phosphomolybdic acid. <i>Journal of Non-Crystalline Solids</i> , 2005 , 351, 2194-2199	3.9	12
72	Proton electrolyte membrane properties and direct methanol fuel cell performance. <i>Journal of Power Sources</i> , 2005 , 140, 34-40	8.9	120
71	Proton electrolyte membrane properties and direct methanol fuel cell performance: II. Fuel cell performance and membrane properties effects. <i>Journal of Power Sources</i> , 2005 , 140, 41-49	8.9	60
70	Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperatures. <i>Journal of Power Sources</i> , 2005 , 145, 485-494	8.9	83
69	Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)âlilica nanocomposites. Journal of Membrane Science, 2005 , 246, 13-25	9.6	184
68	Proton conductive membranes of sulfonated poly(ether ketone ketone). <i>Journal of Membrane Science</i> , 2005 , 260, 181-186	9.6	62
67	Polymer nanocomposite membranes for DMFC application. <i>Journal of Membrane Science</i> , 2005 , 254, 139-146	9.6	120
66	Ionomer-silicates composite membranes: Permeability and conductivity studies. <i>European Polymer Journal</i> , 2005 , 41, 1350-1356	5.2	13
65	Characterization and application of composite membranes in DMFC. Catalysis Today, 2005, 104, 205-21	25.3	73
64	Mixed conductive blends of SPEEK/PANI. Solid State Ionics, 2005, 176, 1411-1417	3.3	40
63	Characterization of proton-conducting organicalhorganic polymeric materials by ASAXS. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2005 , 43, 2981-2992	2.6	6
62	Application of Carbon Nanotube/Polymer Composites as Electrode for Polyelectrolyte Membrane Fuel Cells. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 885, 1		_

61	Anomalous small-angle X-ray scattering characterization of composites based on sulfonated poly(ether ether ketone), zirconium phosphates, and zirconium oxide. <i>Journal of Polymer Science</i> , <i>Part B: Polymer Physics</i> , 2004 , 42, 567-575	2.6	32
60	Membranes for direct methanol fuel cell based on modified heteropolyacids. <i>Desalination</i> , 2004 , 162, 383-391	10.3	59
59	Synthesis and characterization of new sulfonated poly(arylene ether 1,3,4-oxadiazole)s. <i>Reactive and Functional Polymers</i> , 2004 , 61, 171-182	4.6	21
58	Ion exchange membranes derived from sulfonated polyaramides. <i>Reactive and Functional Polymers</i> , 2003 , 57, 77-92	4.6	48
57	Palladium-Catalyzed Phosphonation of Polyphenylsulfone. <i>Macromolecular Chemistry and Physics</i> , 2003 , 204, 61-67	2.6	50
56	Synthesis and Characterization of Poly(arylene ether oxadiazole) Telechelics. <i>Macromolecular Chemistry and Physics</i> , 2003 , 204, 2130-2141	2.6	15
55	Aligned Nafion [©] Nanocomposites: Preparation and Morphological Characterization. <i>Macromolecular Materials and Engineering</i> , 2003 , 288, 175-180	3.9	1
54	Synthesis and characterization of flexible polyoxadiazole films through cyclodehydration of polyhydrazides. <i>Polymer</i> , 2003 , 44, 3633-3639	3.9	28
53	Reduction of methanol permeability in polyetherketoneâfleteropolyacid membranes. <i>Journal of Membrane Science</i> , 2003 , 217, 5-15	9.6	103
52	Organic/inorganic composite membranes for application in DMFC. Solid State Ionics, 2003, 162-163, 26	9-3.35	96
51	Proton-conductive membranes of sulfonated polyphenylsulfone. <i>Journal of Applied Polymer Science</i> , 2002 , 86, 2820-2827	2.9	72
50	Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells. <i>Journal of Membrane Science</i> , 2002 , 203, 215-225	9.6	307
49	Membranes in Fuel Cells. <i>Journal of Membrane Science</i> , 2001 , 185, 1	9.6	20
48	Hybrid membranes based on SiO2/polyether-b-polyamide: Morphology and applications. <i>Journal of Applied Polymer Science</i> , 2001 , 82, 178-185	2.9	19
47	Hybrid films of poly(ethylene oxide- b -amide-6) containing solagel silicon or titanium oxide as inorganic fillers: effect of morphology and mechanical properties on gas permeability. <i>Polymer</i> , 2000 , 41, 5461-5470	3.9	92
46	In situ compatibilization of polyamide 6/natural rubber blends with maleic anhydride. <i>Polymer</i> , 2000 , 41, 5929-5935	3.9	92
45	On the viscosity of moderately concentrated solutions of poly(ether imide) in a mixed solvent of marginal quality. <i>Polymer</i> , 2000 , 41, 4743-4746	3.9	3
44	Porous poly(l-lactide) films obtained by immersion precipitation process: morphology, phase separation and culture of VERO cells. <i>Polymer</i> , 1999 , 40, 3275-3289	3.9	52

43	Membranes of poly(ether imide) and nanodispersed silica. <i>Journal of Membrane Science</i> , 1999 , 157, 219	-2,26	119
42	Organicâlhorganic membranes prepared from polyether diamine and epoxy silane. <i>Journal of Membrane Science</i> , 1999 , 159, 197-207	9.6	106
41	Blends of poly(methyl methacrylate) and polyamides. <i>Journal of Materials Science</i> , 1998 , 33, 3729-3735	4.3	9
40	Electrochemical impedance studies of hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol-gel reaction from solution. <i>Journal of Electroanalytical Chemistry</i> , 1998 , 445, 39-45	4.1	51
39	Hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol-gel reaction from solution: Morphology and thermal analysis. <i>Polymer</i> , 1998 , 39, 1309-1315	3.9	63
38	Phase diagrams of the system tetrahydrofuran/Ebutyrolactone/poly(ether imide) and determination of interaction parameters. <i>Polymer</i> , 1998 , 39, 5133-5138	3.9	4
37	Poly(ether imide) membranes obtained from solution in cosolvent mixtures. <i>Polymer</i> , 1998 , 39, 3411-34	11369	36
36	Hybrids of poly(ethylene oxide-co-epichlorhydrin) and silica: phase separation, morphology and thermal properties. <i>Polymer</i> , 1998 , 39, 6195-6203	3.9	7
35	Miscibilidade de Blendas de Poliestireno com Poliheros de Sillio. <i>Polimeros</i> , 1998 , 8, 77-81	1.6	1
34	Uso do processo sol-gel na obten º de materiais hBridos organo-inorgBicos: preparaB, caracterizaB e aplicaB em eletrLitos de estado sLido. <i>Polimeros</i> , 1997 , 7, 27-36	1.6	8
33	Structural Characterization of Catalytically Active Metal Nanoclusters in Poly(amide imide) Films with High Metal Loading. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 1279-1291	3.4	69
32	Composite nanofiltration membranes prepared by in situ polycondensation of amines in a poly(ethylene oxide-b-amide) layer. <i>Journal of Membrane Science</i> , 1997 , 135, 179-186	9.6	14
31	Hybrids of SiO2 and poly(amide 6-b-ethylene oxide). <i>Polymer</i> , 1997 , 38, 5705-5712	3.9	51
30	Hybrid electrolytes of poly(ethylene oxide) copolymers/LiClO4/SiO2: thermal analysis, mechanical properties and chemometric study of ionic conductivity. <i>Acta Polymerica</i> , 1997 , 48, 193-198		24
29	Blends of organosilicon polymers with polystyrene and poly(2,6-dimethyl-1,4-phenylene oxide) 1997 , 35, 2609-2616		2
28	Evidence for spinodal decomposition and nucleation and growth mechanisms during membrane formation. <i>Journal of Membrane Science</i> , 1996 , 111, 93-103	9.6	130
27	Solid electrolytes based on poly(amide 6-b-ethylene oxide). Solid State Ionics, 1996, 91, 123-130	3.3	28
26	Silicone membranes with silica nanoparticles. <i>Journal of Materials Science Letters</i> , 1996 , 15, 1139-1141		45

25	Dense hydrophilic composite membranes for ultrafiltration. <i>Journal of Membrane Science</i> , 1995 , 106, 49-56	9.6	141
24	Phase separation in PMMA/silica sol-gel systems. <i>Polymer</i> , 1995 , 36, 1425-1434	3.9	68
23	Morphology of block copolymers in a selective environment. <i>Polymer</i> , 1994 , 35, 490-495	3.9	11
22	Shear influence on the phase separation of oligomer blends. <i>Macromolecular Chemistry and Physics</i> , 1994 , 195, 1257-1271	2.6	8
21	Preferential wetting of oligomeric ethylene glycol/propylene glycol blends on solid surfaces. <i>Acta Polymerica</i> , 1994 , 45, 110-114		3
20	Solution Properties of a Diblock Copolymer in a Selective Solvent of Marginal Quality. 1. Phase Diagram and Rheological Behavior. <i>Macromolecules</i> , 1994 , 27, 1045-1050	5.5	6
19	Solution Properties of a Diblock Copolymer in a Selective Solvent of Marginal Quality. 2. Characterization of Micelles and Surface Tension. <i>Macromolecules</i> , 1994 , 27, 4561-4565	5.5	9
18	Ultrafiltration membranes from poly(ether sulfonamide)/poly(ether imide) blends. <i>Journal of Membrane Science</i> , 1993 , 79, 83-91	9.6	24
17	Ultrafiltration membranes from PVDF/PMMA blends. <i>Journal of Membrane Science</i> , 1992 , 73, 25-35	9.6	162
16	Polymer-polymer miscibility evaluation by acoustic emission. <i>Die Makromolekulare Chemie Rapid Communications</i> , 1992 , 13, 45-53		10
15	Adhesion and morphology of PVDF/PMMA and compatibilized PVDF/PS interfaces. <i>Polymer</i> , 1991 , 32, 990-998	3.9	17
14	. IEEE Transactions on Electrical Insulation, 1989 , 24, 99-105		13
13	Osmosedimentation: A Study Using the Linear Approximation of Non-Equilibrium Thermodynamics. <i>Journal of Non-Equilibrium Thermodynamics</i> , 1987 , 12,	3.8	7
12	On the cooccurrence of demixing and thermoreversible gelation of polymer solutions. 1. Experimental observations. <i>Macromolecules</i> , 1987 , 20, 1943-1947	5.5	15
11	On the cooccurrence of demixing and thermoreversible gelation of polymer solutions. 2. Thermodynamic background. <i>Macromolecules</i> , 1987 , 20, 1948-1951	5.5	9
10	On the cooccurrence of demixing and thermoreversible gelation of polymer solutions. 3. Overall view. <i>Macromolecules</i> , 1987 , 20, 1952-1957	5.5	9
9	Cellulose acetate membranes for osmosedimentation: Performance and morphological dependence on preparation conditions. <i>Polymer</i> , 1986 , 27, 937-943	3.9	10
8	A New Centrifugal Ultrafiltration Device. <i>Separation Science and Technology</i> , 1986 , 21, 823-830	2.5	3

LIST OF PUBLICATIONS

7	Percoll and Ficoll self-generated density gradients by low-speed osmocentrifugation. <i>Analytical Biochemistry</i> , 1985 , 146, 48-51	3.1	9
6	Osmosedimentation: Approach to sedimentation equilibrium under gravity. <i>Journal of Colloid and Interface Science</i> , 1984 , 98, 489-493	9.3	5
5	Preparation and characterization of cellulose acetate membranes for osmosedimentation. <i>Journal of Polymer Science, Polymer Letters Edition</i> , 1983 , 21, 49-55		12
4	Gas Separation with Membranes39-67		4
3	Gas Separation with Membranes39-67 Ball milling as an important pretreatment technique in lignocellulose biorefineries: a review. Biomass Conversion and Biorefinery,1	2.3	4

1 Polymeric Membranes1-19