Suzana P Nunes ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/4152657/publications.pdf Version: 2024-02-01 286 12,925 61 99 g-index 293 293 293 9835 293 293 293 9835 all docs docs citations times ranked citing authors | # | Article | IF | CITATIONS | |----|---|------|-----------| | 1 | Recent membrane development for pervaporation processes. Progress in Polymer Science, 2016, 57, 1-31. | 24.7 | 440 | | 2 | Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells. Journal of Membrane Science, 2002, 203, 215-225. | 8.2 | 355 | | 3 | Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science, 2020, 598, 117761. | 8.2 | 348 | | 4 | CO ₂ -Philic Polymer Membrane with Extremely High Separation Performance. Macromolecules, 2010, 43, 326-333. | 4.8 | 288 | | 5 | Materials and membrane technologies for water and energy sustainability. Sustainable Materials and Technologies, 2016, 7, 1-28. | 3.3 | 279 | | 6 | Switchable pH-Responsive Polymeric Membranes Prepared <i>via</i> Block Copolymer Micelle Assembly. ACS Nano, 2011, 5, 3516-3522. | 14.6 | 255 | | 7 | Two-dimensional nanochannel membranes for molecular and ionic separations. Chemical Society Reviews, 2020, 49, 1071-1089. | 38.1 | 242 | | 8 | Selective Separation of Similarly Sized Proteins with Tunable Nanoporous Block Copolymer Membranes. ACS Nano, 2013, 7, 768-776. | 14.6 | 240 | | 9 | Developments in Membrane Research: from Material via Process Design to Industrial Application. Advanced Engineering Materials, 2006, 8, 328-358. | 3.5 | 215 | | 10 | Block Copolymer Membranes for Aqueous Solution Applications. Macromolecules, 2016, 49, 2905-2916. | 4.8 | 212 | | 11 | Ultraporous Films with Uniform Nanochannels by Block Copolymer Micelles Assembly.
Macromolecules, 2010, 43, 8079-8085. | 4.8 | 200 | | 12 | Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)–silica nanocomposites. Journal of Membrane Science, 2005, 246, 13-25. | 8.2 | 198 | | 13 | Ultrafiltration membranes from PVDF/PMMA blends. Journal of Membrane Science, 1992, 73, 25-35. | 8.2 | 178 | | 14 | Organic/inorganic composite membranes for application in DMFC. Solid State Ionics, 2003, 162-163, 269-275. | 2.7 | 178 | | 15 | Dense hydrophilic composite membranes for ultrafiltration. Journal of Membrane Science, 1995, 106, 49-56. | 8.2 | 153 | | 16 | Evidence for spinodal decomposition and nucleation and growth mechanisms during membrane formation. Journal of Membrane Science, 1996, 111, 93-103. | 8.2 | 147 | | 17 | Proton electrolyte membrane properties and direct methanol fuel cell performance. Journal of Power Sources, 2005, 140, 34-40. | 7.8 | 146 | | 18 | A Hybrid Microbial Fuel Cell Membrane Bioreactor with a Conductive Ultrafiltration Membrane
Biocathode for Wastewater Treatment. Environmental Science & Echnology, 2013, 47, 11821-11828. | 10.0 | 142 | | # | Article | IF | Citations | |----|---|------|-----------| | 19 | Polymer nanocomposite membranes for DMFC application. Journal of Membrane Science, 2005, 254, 139-146. | 8.2 | 136 | | 20 | Sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs). Journal of Membrane Science, 2008, 323, 337-346. | 8.2 | 132 | | 21 | Membranes of poly(ether imide) and nanodispersed silica. Journal of Membrane Science, 1999, 157, 219-226. | 8.2 | 131 | | 22 | Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity. Nature Communications, 2014, 5, 4110. | 12.8 | 124 | | 23 | Selfâ€Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra―to
Nanofiltration. Angewandte Chemie - International Edition, 2015, 54, 13937-13941. | 13.8 | 122 | | 24 | Organic–inorganic membranes prepared from polyether diamine and epoxy silane. Journal of Membrane Science, 1999, 159, 197-207. | 8.2 | 117 | | 25 | Performance evaluation of the DCMD desalination process under bench scale and large scale module operating conditions. Journal of Membrane Science, 2014, 455, 103-112. | 8.2 | 116 | | 26 | Reduction of methanol permeability in polyetherketone–heteropolyacid membranes. Journal of Membrane Science, 2003, 217, 5-15. | 8.2 | 112 | | 27 | Biomimetic artificial water channel membranes for enhanced desalination. Nature Nanotechnology, 2021, 16, 190-196. | 31.5 | 109 | | 28 | Synthesis and fabrication of nanostructured hydrophobic polyazole membranes for low-energy water recovery. Journal of Membrane Science, 2012, 423-424, 11-19. | 8.2 | 106 | | 29 | Ultrathin 2Dâ€Layered Cyclodextrin Membranes for High―Performance Organic Solvent Nanofiltration.
Advanced Functional Materials, 2020, 30, 1906797. | 14.9 | 103 | | 30 | Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration. Nature Communications, 2020, 11, 5882. | 12.8 | 101 | | 31 | Solution Small-Angle X-ray Scattering as a Screening and Predictive Tool in the Fabrication of Asymmetric Block Copolymer Membranes. ACS Macro Letters, 2012, 1, 614-617. | 4.8 | 100 | | 32 | Self-assembly in casting solutions of block copolymer membranes. Soft Matter, 2013, 9, 5557. | 2.7 | 100 | | 33 | From Micelle Supramolecular Assemblies in Selective Solvents to Isoporous Membranes. Langmuir, 2011, 27, 10184-10190. | 3.5 | 99 | | 34 | Hybrid films of poly(ethylene oxide- b -amide-6) containing sol–gel silicon or titanium oxide as inorganic fillers: effect of morphology and mechanical properties on gas permeability. Polymer, 2000, 41, 5461-5470. | 3.8 | 98 | | 35 | In situ compatibilization of polyamide 6/natural rubber blends with maleic anhydride. Polymer, 2000, 41, 5929-5935. | 3.8 | 98 | | 36 | Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperatures. Journal of Power Sources, 2005, 145, 485-494. | 7.8 | 93 | | # | Article | IF | Citations | |----|--|--------------|-----------| | 37 | From Charge-Mosaic to Micelle Self-Assembly: Block Copolymer Membranes in the Last 40 Years. Industrial & Engineering Chemistry Research, 2013, 52, 993-1003. | 3.7 | 88 | | 38 | Hydroxyl Functionalized Polytriazole- <i>co</i> -polyoxadiazole as Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes.
ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & Substrates for Forward Osmosis Membranes. ACS Applied Materials & S | 8.0 | 88 | | 39 | 2D-dual-spacing channel membranes for high performance organic solvent nanofiltration. Journal of Materials Chemistry A, 2019, 7, 11673-11682. | 10.3 | 88 | | 40 | Characterization and application of composite membranes in DMFC. Catalysis Today, 2005, 104, 205-212. | 4.4 | 83 | | 41 | Quaternary ammonium membrane materials for CO2 separation. Journal of Membrane Science, 2010, 359, 44-53. | 8.2 | 82 | | 42 | Selfâ€Assembled Isoporous Block Copolymer Membranes with Tuned Pore Sizes. Angewandte Chemie - International Edition, 2014, 53, 10072-10076. | 13.8 | 82 | | 43 | Phase separation in PMMA/silica sol-gel systems. Polymer, 1995, 36, 1425-1434. | 3.8 | 80 | | 44 | Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation. Journal of Membrane Science, 2014, 453, 471-477. | 8.2 | 80 | | 45 | Cellulose multilayer membranes manufacture with ionic liquid. Journal of Membrane Science, 2015, 490, 282-293. | 8.2 | 80 | | 46 | Structural Characterization of Catalytically Active Metal Nanoclusters in Poly(amide imide) Films with High Metal Loading. Journal of Physical Chemistry B, 1997, 101, 1279-1291. | 2.6 | 78 | | 47 | Proton-conductive membranes of sulfonated polyphenylsulfone. Journal of Applied Polymer Science, 2002, 86, 2820-2827. | 2.6 | 78 | | 48 | Polyimide Asymmetric Membranes for Hydrogen Separation: Influence of Formation Conditions on Gas Transport Properties. Advanced Engineering Materials, 2006, 8, 390-397. | 3.5 | 78 | | 49 | Hydrophobic thin film composite nanofiltration membranes derived solely from sustainable sources.
Green Chemistry, 2021, 23, 1175-1184. | 9.0 | 78 | | 50 | Proton conductive membranes of sulfonated poly(ether ketone ketone). Journal of Membrane Science, 2005, 260, 181-186. | 8.2 | 72 | | 51 | Thermal degradation of polyetherimide joined by friction riveting (FricRiveting). Part I: Influence of rotation speed. Polymer Degradation and Stability, 2008, 93, 1529-1538. | 5.8 | 72 | | 52 | Recycled Poly(ethylene terephthalate) for High Temperature Solvent Resistant Membranes. ACS Applied Polymer Materials, 2019, 1, 2379-2387. | 4.4 | 72 | | 53 | Hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol-gel reaction from solution: Morphology and thermal analysis. Polymer, 1998, 39, 1309-1315. | 3.8 | 71 | | 54 | Interfacial Polymerization of Zwitterionic Building Blocks for High-Flux Nanofiltration Membranes.
Langmuir, 2019, 35, 1284-1293. | 3 . 5 | 71 | | # | Article | IF | Citations | |----|---|------|-----------| | 55 | Smart covalent organic networks (CONs) with "on-off-on―light-switchable pores for molecular separation. Science Advances, 2020, 6, eabb3188. | 10.3 | 71 | | 56 | Recent advances in polymer membranes employing non-toxic solvents and materials. Green Chemistry, 2021, 23, 9815-9843. | 9.0 | 71 | | 57 | Proton electrolyte membrane properties and direct methanol fuel cell performance. Journal of Power Sources, 2005, 140, 41-49. | 7.8 | 69 | | 58 | Block Copolymer Hollow Fiber Membranes with Catalytic Activity and pH-Response. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7001-7006. | 8.0 | 69 | | 59 | Complexation-Tailored Morphology of Asymmetric Block Copolymer Membranes. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7152-7159. | 8.0 | 64 | | 60 | Membranes for direct methanol fuel cell based on modified heteropolyacids. Desalination, 2004, 162, 383-391. | 8.2 | 63 | | 61 | Characterization of partially sulfonated polyoxadiazoles and oxadiazole–triazole copolymers.
Journal of Membrane Science, 2007, 295, 121-129. | 8.2 | 63 | | 62 | Zirconium oxide hybrid membranes for direct methanol fuel cellsâ€"Evaluation of transport properties. Journal of Membrane Science, 2006, 284, 137-144. | 8.2 | 61 | | 63 | Electrochemical impedance studies of hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol-gel reaction from solution. Journal of Electroanalytical Chemistry, 1998, 445, 39-45. | 3.8 | 60 | | 64 | Microfluidic Integrated Organic Electrochemical Transistor with a Nanoporous Membrane for Amyloid- \hat{l}^2 Detection. ACS Nano, 2021, 15, 8130-8141. | 14.6 | 59 | | 65 | Silver-Enhanced Block Copolymer Membranes with Biocidal Activity. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18497-18501. | 8.0 | 58 | | 66 | Porous poly(l-lactide) films obtained by immersion precipitation process: morphology, phase separation and culture of VERO cells. Polymer, 1999, 40, 3275-3289. | 3.8 | 56 | | 67 | Hybrids of SiO2 and poly(amide 6-b-ethylene oxide). Polymer, 1997, 38, 5705-5712. | 3.8 | 55 | | 68 | Hierarchically porous electrospun nanofibrous mats produced from intrinsically microporous fluorinated polyimide for the removal of oils and non-polar solvents. Environmental Science: Nano, 2020, 7, 1365-1372. | 4.3 | 55 | | 69 | Palladium-Catalyzed Phosphonation of Polyphenylsulfone. Macromolecular Chemistry and Physics, 2003, 204, 61-67. | 2.2 | 54 | | 70 | Crosslinked copolyazoles with a zwitterionic structure for organic solvent resistant membranes. Polymer Chemistry, 2015, 6, 543-554. | 3.9 | 54 | | 71 | Cellulose hollow fibers for organic resistant nanofiltration. Journal of Membrane Science, 2019, 586, 151-161. | 8.2 | 54 | | 72 | Mass transport of direct methanol fuel cell species in sulfonated poly(ether ether ketone) membranes. Electrochimica Acta, 2006, 51, 3699-3706. | 5.2 | 53 | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 73 | Porous polymeric membranes with thermal and solvent resistance. Journal of Membrane Science, 2017, 539, 187-196. | 8.2 | 52 | | 74 | lon exchange membranes derived from sulfonated polyaramides. Reactive and Functional Polymers, 2003, 57, 77-92. | 4.1 | 51 | | 75 | Polyazole Hollow Fiber Membranes for Direct Contact Membrane Distillation. Industrial & | 3.7 | 51 | | 76 | Highways for water molecules: Interplay between nanostructure and water vapor transport in block copolymer membranes. Journal of Membrane Science, 2019, 572, 641-649. | 8.2 | 51 | | 77 | Silicone membranes with silica nanoparticles. Journal of Materials Science Letters, 1996, 15, 1139-1141. | 0.5 | 50 | | 78 | Single-step synthesis of sulfonated polyoxadiazoles and their use as proton conducting membranes. Journal of Power Sources, 2008, 175, 49-59. | 7.8 | 50 | | 79 | PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation. Journal of Materials Science, 2014, 49, 2045-2053. | 3.7 | 49 | | 80 | Time-resolved GISAXS and cryo-microscopy characterization of block copolymer membrane formation. Polymer, 2014, 55, 1327-1332. | 3.8 | 49 | | 81 | Oil–Water Separation using Membranes Manufactured from Cellulose/Ionic Liquid Solutions. ACS Sustainable Chemistry and Engineering, 2019, 7, 5649-5659. | 6.7 | 49 | | 82 | Poly(ether imide) membranes obtained from solution in cosolvent mixtures. Polymer, 1998, 39, 3411-3416. | 3.8 | 47 | | 83 | Modified SPEEK membranes for direct ethanol
fuel cell. Journal of Power Sources, 2010, 195, 4036-4042. | 7.8 | 47 | | 84 | Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes. Journal of Power Sources, 2011, 196, 911-919. | 7.8 | 47 | | 85 | Fabrication of electrospun nanofibrous membranes for membrane distillation application.
Desalination and Water Treatment, 2013, 51, 1337-1343. | 1.0 | 47 | | 86 | Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination. Water Research, 2016, 88, 337-345. | 11.3 | 47 | | 87 | Green solvents for membrane manufacture: Recent trends and perspectives. Current Opinion in Green and Sustainable Chemistry, 2021, 28, 100427. | 5.9 | 44 | | 88 | Polytriazole membranes with ultrathin tunable selective layer for crude oil fractionation. Science, 2022, 376, 1105-1110. | 12.6 | 44 | | 89 | Outer-selective thin film composite (TFC) hollow fiber membranes for osmotic power generation.
Journal of Membrane Science, 2016, 505, 157-166. | 8.2 | 43 | | 90 | Gas transport properties of segmented poly(ether siloxane urethane urea) membranes. Journal of Membrane Science, 2006, 281, 747-753. | 8.2 | 42 | | # | Article | IF | CITATIONS | |-----|---|------|-----------| | 91 | Mixed conductive blends of SPEEK/PANI. Solid State Ionics, 2005, 176, 1411-1417. | 2.7 | 41 | | 92 | Catalytically active CNT–polymer-membrane assemblies: From synthesis to application. Journal of Membrane Science, 2008, 321, 123-130. | 8.2 | 41 | | 93 | Membrane manufacture for peptide separation. Green Chemistry, 2016, 18, 5151-5159. | 9.0 | 41 | | 94 | Temporal changes in extracellular polymeric substances on hydrophobic and hydrophilic membrane surfaces in a submerged membrane bioreactor. Water Research, 2016, 95, 27-38. | 11.3 | 41 | | 95 | Sulfonated polynaphthalimides with benzimidazole pendant groups. Polymer, 2008, 49, 3875-3883. | 3.8 | 40 | | 96 | Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification. Journal of Membrane Science, 2016, 514, 135-142. | 8.2 | 40 | | 97 | Vacuum membrane distillation of liquid desiccants utilizing hollow fiber membranes. Separation and Purification Technology, 2018, 199, 57-63. | 7.9 | 40 | | 98 | Green Synthesis of Thin-Film Composite Membranes for Organic Solvent Nanofiltration. ACS Sustainable Chemistry and Engineering, 2020, 8, 11541-11548. | 6.7 | 40 | | 99 | Sulfonated silica-based electrolyte nanocomposite membranes. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2278-2298. | 2.1 | 39 | | 100 | Block copolymer/homopolymer dual-layer hollow fiber membranes. Journal of Membrane Science, 2014, 472, 39-44. | 8.2 | 39 | | 101 | Phosphonated and sulfonated polyhphenylsulfone membranes for fuel cell application. Journal of Membrane Science, 2006, 285, 206-213. | 8.2 | 38 | | 102 | Development of polyoxadiazole nanocomposites for high temperature polymer electrolyte membrane fuel cells. Journal of Membrane Science, 2008, 322, 406-415. | 8.2 | 38 | | 103 | Fluorinated polyoxadiazole for high-temperature polymer electrolyte membrane fuel cells. Journal of Membrane Science, 2008, 321, 114-122. | 8.2 | 38 | | 104 | The effects of a co-solvent on fabrication of cellulose acetate membranes from solutions in 1-ethyl-3-methylimidazolium acetate. Journal of Membrane Science, 2016, 520, 540-549. | 8.2 | 38 | | 105 | Hollow fiber membrane lumen modified by polyzwitterionic grafting. Journal of Membrane Science, 2017, 522, 1-11. | 8.2 | 38 | | 106 | Polyoxadiazole hollow fibers for produced water treatment by direct contact membrane distillation. Desalination, 2018, 432, 32-39. | 8.2 | 38 | | 107 | Krytox–Montmorillonite–Nafion® nanocomposite membrane for effective methanol crossover reduction in DMFCs. Solid State Ionics, 2007, 178, 1627-1635. | 2.7 | 37 | | 108 | Strategies for Integrated Capture and Conversion of CO ₂ from Dilute Flue Gases and the Atmosphere. ChemSusChem, 2021, 14, 1805-1820. | 6.8 | 37 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 109 | Solvent and thermal resistant ultrafiltration membranes from alkyne-functionalized high-performance polymers. Journal of Membrane Science, 2018, 564, 361-371. | 8.2 | 36 | | 110 | An organic electrochemical transistor integrated with a molecularly selective isoporous membrane for amyloid- \hat{l}^2 detection. Biosensors and Bioelectronics, 2019, 143, 111561. | 10.1 | 36 | | 111 | Anomalous small-angle X-ray scattering characterization of composites based on sulfonated poly(ether ether ketone), zirconium phosphates, and zirconium oxide. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 567-575. | 2.1 | 35 | | 112 | A Microfiltration Polymerâ€Based Hollowâ€Fiber Cathode as a Promising Advanced Material for Simultaneous Recovery of Energy and Water. Advanced Materials, 2016, 28, 9504-9511. | 21.0 | 35 | | 113 | Fabrication of polyacrylonitrile hollow fiber membranes from ionic liquid solutions. Polymer Chemistry, 2016, 7, 113-124. | 3.9 | 35 | | 114 | Cyclodextrin polymer networks decorated with subnanometer metal nanoparticles for high-performance low-temperature catalysis. Science Advances, 2019, 5, eaax6976. | 10.3 | 35 | | 115 | Organic modification of layered silicates: structural and thermal characterizations. Journal of Non-Crystalline Solids, 2005, 351, 970-975. | 3.1 | 34 | | 116 | Solid electrolytes based on poly(amide 6-b-ethylene oxide). Solid State Ionics, 1996, 91, 123-130. | 2.7 | 32 | | 117 | Nafion $\hat{A}^{\text{@}}$ /ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 2014, 246, 950-959. | 7.8 | 32 | | 118 | Ionic liquids as self-assembly guide for the formation of nanostructured block copolymer membranes. Journal of Membrane Science, 2015, 492, 568-577. | 8.2 | 32 | | 119 | Polyethersulfone flat sheet and hollow fiber membranes from solutions in ionic liquids. Journal of Membrane Science, 2017, 539, 161-171. | 8.2 | 32 | | 120 | Can fouling in membranes be ever defeated?. Current Opinion in Chemical Engineering, 2020, 28, 90-95. | 7.8 | 32 | | 121 | 3D Membrane Imaging and Porosity Visualization. Industrial & Engineering Chemistry Research, 2016, 55, 3689-3695. | 3.7 | 31 | | 122 | Crosslinked polytriazole membranes for organophilic filtration. Journal of Membrane Science, 2017, 528, 264-272. | 8.2 | 31 | | 123 | Artificial 3D hierarchical and isotropic porous polymeric materials. Science Advances, 2018, 4, eaat0713. | 10.3 | 31 | | 124 | Synthesis and characterization of flexible polyoxadiazole films through cyclodehydration of polyhydrazides. Polymer, 2003, 44, 3633-3639. | 3.8 | 29 | | 125 | One-pot synthesis of high molecular weight sulfonated poly(oxadiazole–triazole) copolymers for proton conductive membranes. Journal of Membrane Science, 2008, 319, 14-22. | 8.2 | 29 | | 126 | Porous polyoxadiazole membranes for harsh environment. Journal of Membrane Science, 2013, 445, 127-134. | 8.2 | 29 | | # | Article | IF | Citations | |-----|--|------|-----------| | 127 | Hollow ZIF-8 Nanoworms from Block Copolymer Templates. Scientific Reports, 2015, 5, 15275. | 3.3 | 29 | | 128 | How Do Polyethylene Glycol and Poly(sulfobetaine) Hydrogel Layers on Ultrafiltration Membranes Minimize Fouling and Stay Stable in Cleaning Chemicals?. Industrial & Engineering Chemistry Research, 2017, 56, 6785-6795. | 3.7 | 29 | | 129 | Stable Graphene Oxide Cross-Linked Membranes for Organic Solvent
Nanofiltration. Industrial & Engineering Chemistry Research, 2019, 58, 23106-23113. | 3.7 | 29 | | 130 | Title is missing!. Acta Polymerica, 1997, 48, 193-198. | 0.9 | 28 | | 131 | Hydrophobic Hyflon AD/Poly(vinylidene fluoride) Membranes for Butanol Dehydration via Pervaporation. Industrial & Dehydration (Section 2015) (1997) (| 3.7 | 28 | | 132 | Synthesis of highly porous poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) asymmetric membranes. Polymer Chemistry, 2016, 7, 3076-3089. | 3.9 | 28 | | 133 | Engineering membranes with macrocycles for precise molecular separations. Journal of Materials Chemistry A, 2021, 9, 18102-18128. | 10.3 | 28 | | 134 | Ultrafiltration membranes from poly(ether sulfonamide)/poly(ether imide) blends. Journal of Membrane Science, 1993, 79, 83-91. | 8.2 | 27 | | 135 | Permeability and Conductivity Studies on Ionomer-Polysilsesquioxane Hybrid Materials.
Macromolecular Chemistry and Physics, 2006, 207, 336-341. | 2.2 | 27 | | 136 | Modification of proton conductive polymer membranes with phosphonated polysilsesquioxanes. Journal of Membrane Science, 2008, 325, 559-569. | 8.2 | 27 | | 137 | Poly(acrylic acid-co-4-vinylimidazole)/Sulfonated poly(ether ether ketone) blend membranes: A role of polymer chain with proton acceptor and donor for enhancing proton transfer in anhydrous system. International Journal of Hydrogen Energy, 2011, 36, 10384-10391. | 7.1 | 27 | | 138 | Spray-coated graphene oxide hollow fibers for nanofiltration. Journal of Membrane Science, 2020, 606, 118006. | 8.2 | 27 | | 139 | Mixed conductive membrane: Aniline polymerization in an acid SPEEK matrix. Journal of Membrane Science, 2006, 279, 70-75. | 8.2 | 26 | | 140 | Thin porphyrin composite membranes with enhanced organic solvent transport. Journal of Membrane Science, 2018, 563, 684-693. | 8.2 | 26 | | 141 | Preparation of PEEK Membranes with Excellent Stability Using Common Organic Solvents. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 5218-5226. | 3.7 | 26 | | 142 | Liquid desiccant dehumidification and regeneration process to meet cooling and freshwater needs of desert greenhouses. Desalination and Water Treatment, 2016, 57, 23430-23442. | 1.0 | 25 | | 143 | Ball milling as an important pretreatment technique in lignocellulose biorefineries: a review. Biomass Conversion and Biorefinery, 2023, 13, 15593-15616. | 4.6 | 25 | | 144 | On the cooccurrence of demixing and thermoreversible gelation of polymer solutions. 1. Experimental observations. Macromolecules, 1987, 20, 1943-1947. | 4.8 | 24 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 145 | Proton exchange membranes for direct methanol fuel cells: Properties critical study concerning methanol crossover and proton conductivity. Journal of Membrane Science, 2006, 276, 126-134. | 8.2 | 24 | | 146 | Synthesis and Properties of Novel Polyimides Bearing Sulfonated Benzimidazole Pendant Groups. Macromolecular Rapid Communications, 2007, 28, 616-622. | 3.9 | 24 | | 147 | Proton Conducting Membranes Based on Benzimidazole Sulfonic Acid Doped Sulfonated Poly(Oxadiazole–Triazole) Copolymer for Low Humidity Operation. Fuel Cells, 2008, 8, 209-216. | 2.4 | 24 | | 148 | Investigation of the role of benzimidazole-based model compounds on thermal stability and anhydrous proton conductivity of sulfonated poly(ether ether ketone). Solid State Ionics, 2009, 180, 738-745. | 2.7 | 24 | | 149 | Self-assembled block copolymer membranes: From basic research to large-scale manufacturing. Journal of Materials Research, 2013, 28, 2661-2665. | 2.6 | 24 | | 150 | Design of block copolymer membranes using segregation strength trend lines. Molecular Systems Design and Engineering, 2016, 1, 278-289. | 3.4 | 24 | | 151 | Graphene Oxide Liquid Crystal Membranes in Protic Ionic Liquid for Nanofiltration. ACS Applied Nano Materials, 2018, 1, 4661-4670. | 5.0 | 24 | | 152 | Rapid fabrication of fluorinated covalent organic polymer membranes for organic solvent nanofiltration. Journal of Membrane Science, 2022, 648, 120345. | 8.2 | 24 | | 153 | Dual-skinned polyamide/poly(vinylidene fluoride)/cellulose acetate membranes with embedded woven. Journal of Membrane Science, 2016, 520, 840-849. | 8.2 | 23 | | 154 | Ethylene glycol as bore fluid for hollow fiber membrane preparation. Journal of Membrane Science, 2017, 533, 171-178. | 8.2 | 23 | | 155 | Hollow Fibers with Encapsulated Green Amino Acid-Based Ionic Liquids for Dehydration. ACS Sustainable Chemistry and Engineering, 2020, 8, 17763-17771. | 6.7 | 23 | | 156 | Enzyme catalysis coupled with artificial membranes towards process intensification in biorefinery- a review. Bioresource Technology, 2021, 335, 125248. | 9.6 | 23 | | 157 | Hybrid membranes based on SiO2/polyether-b-polyamide: Morphology and applications. Journal of Applied Polymer Science, 2001, 82, 178-185. | 2.6 | 22 | | 158 | Synthesis and characterization of new sulfonated poly(arylene ether 1,3,4-oxadiazole)s. Reactive and Functional Polymers, 2004, 61, 171-182. | 4.1 | 22 | | 159 | Exploration of the Synergy Between 2D Nanosheets and a Non-2D Filler in Mixed Matrix Membranes for Gas Separation. Frontiers in Chemistry, 2020, 8, 58. | 3.6 | 22 | | 160 | Nanofabrication of Isoporous Membranes for Cell Fractionation. Scientific Reports, 2020, 10, 6138. | 3.3 | 22 | | 161 | Fluorinated thin-film composite membranes for nonpolar organic solvent nanofiltration. Separation and Purification Technology, 2021, 279, 119777. | 7.9 | 22 | | 162 | Selfâ€Assembled Isoporous Block Copolymer Membranes with Tuned Pore Sizes. Angewandte Chemie, 2014, 126, 10236-10240. | 2.0 | 21 | | # | Article | lF | Citations | |-----|---|------------|-----------| | 163 | Antibiofilm effect enhanced by modification of 1,2,3-triazole and palladium nanoparticles on polysulfone membranes. Scientific Reports, 2016, 6, 24289. | 3.3 | 21 | | 164 | Organic solvent and thermal resistant polytriazole membranes with enhanced mechanical properties cast from solutions in non-toxic solvents. Journal of Membrane Science, 2020, 597, 117634. | 8.2 | 21 | | 165 | Membranes in Fuel Cells. Journal of Membrane Science, 2001, 185, 1. | 8.2 | 20 | | 166 | Preparation of 4(5)-vinylimidazole-co-acrylic acid copolymer and thermal performances related to applicability as PEM fuel cells. Polymer Degradation and Stability, 2008, 93, 1389-1395. | 5.8 | 20 | | 167 | Topology and Shape Control for Assemblies of Block Copolymer Blends in Solution. Macromolecules, 2015, 48, 8036-8044. | 4.8 | 20 | | 168 | Oriented Zeolitic Imidazolate Framework (ZIF) Nanocrystal Films for Molecular Separation Membranes. ACS Applied Nano Materials, 2020, 3, 3839-3846. | 5.0 | 20 | | 169 | COMPOSITE MEMBRANES WITH CROSS-LINKED MATRIMID SELECTIVE LAYER FOR GAS SEPARATION. Environmental Engineering and Management Journal, 2008, 7, 653-659. | 0.6 | 20 | | 170 | Low fouling polysulfone ultrafiltration membrane via click chemistry. Journal of Applied Polymer Science, 2015, 132, . | 2.6 | 19 | | 171 | Artificial membranes with selective nanochannels for protein transport. Polymer Chemistry, 2016, 7, 6189-6201. | 3.9 | 19 | | 172 | Functionalized Nanochannels from Selfâ€Assembled and Photomodified Poly(Styreneâ€∢i>bh>å€Butadieneâ€∢i>bh>å€Styrene). Small, 2018, 14, e1701885. | 10.0 | 19 | | 173 | Diffusion-induced <i>in situ</i> growth of covalent organic frameworks for composite membranes. Journal of Materials Chemistry A, 2019, 7, 25802-25807. | 10.3 | 19 | | 174 | Protonation of Sulfonated Poly(4,4′-diphenylether-1,3,4-oxadiazole) Membranes. Macromolecular Chemistry and Physics, 2007, 208, 467-473. | 2.2 | 18 | |
175 | Hollow fibre membrane-based liquid desiccant humidity control for controlled environment agriculture. Biosystems Engineering, 2019, 183, 47-57. | 4.3 | 18 | | 176 | NEXARTM-coated hollow fibers for air dehumidification. Journal of Membrane Science, 2020, 614, 118450. | 8.2 | 18 | | | | | | | 177 | Tunable membranes incorporating artificial water channels for high-performance brackish/low-salinity water reverse osmosis desalination. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 7.1 | 18 | | 177 | brackish/low-salinity water reverse osmosis desalination. Proceedings of the National Academy of | 7.1
3.8 | 18 | | | brackish/low-salinity water reverse osmosis desalination. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Adhesion and morphology of PVDF/PMMA and compatibilized PVDF/PS interfaces. Polymer, 1991, 32, | | | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 181 | Thermo-Responsive Membranes from Blends of PVDF and PNIPAM- <i>b</i> -PVDF Block Copolymers with Linear and Star Architectures. Macromolecules, 2021, 54, 10235-10250. | 4.8 | 17 | | 182 | Synthesis and Characterization of Poly(arylene ether oxadiazole) Telechelics. Macromolecular Chemistry and Physics, 2003, 204, 2130-2141. | 2.2 | 16 | | 183 | lonomer-silicates composite membranes: Permeability and conductivity studies. European Polymer
Journal, 2005, 41, 1350-1356. | 5.4 | 16 | | 184 | SPEEK/Polyimide Blends for Proton Conductive MembranesPresented at the 1st CARISMA Conference, Progress MEA 2008, La Grande Motte, 21st–24th September 2008 Fuel Cells, 2009, 9, 401-409. | 2.4 | 16 | | 185 | Proton conductive membranes based on doped sulfonated polytriazole. International Journal of Hydrogen Energy, 2010, 35, 12054-12064. | 7.1 | 16 | | 186 | Water flow prediction for membranes using 3D simulations with detailed morphology. Journal of Membrane Science, 2015, 487, 19-31. | 8.2 | 16 | | 187 | Poly(ether imide sulfone) Membranes from Solutions in Ionic Liquids. Industrial & Description (2017, 56, 14914-14922. | 3.7 | 16 | | 188 | Tracking degradation and pyrolysis of EPDM insulators. IEEE Transactions on Electrical Insulation, 1989, 24, 99-105. | 0.8 | 15 | | 189 | Preparation and characterization of bilayer carbon/polymer membranes. Journal of Membrane Science, 2009, 326, 27-35. | 8.2 | 15 | | 190 | Dendrimeric Thin-Film Composite Membranes: Free Volume, Roughness, and Fouling Resistance. Industrial & Engineering Chemistry Research, 2017, 56, 14337-14349. | 3.7 | 15 | | 191 | Electrochemically active polymeric hollow fibers based on poly(ether-b-amide)/carbon nanotubes. Journal of Membrane Science, 2018, 545, 323-328. | 8.2 | 15 | | 192 | SAXS/WAXS characterization of proton-conducting polymer membranes containing phosphomolybdic acid. Journal of Non-Crystalline Solids, 2005, 351, 2194-2199. | 3.1 | 14 | | 193 | Polymer and Membrane Design for Low Temperature Catalytic Reactions. Macromolecular Rapid Communications, 2016, 37, 700-704. | 3.9 | 14 | | 194 | Block Copolymer-Based Magnetic Mixed Matrix Membranesâ€"Effect of Magnetic Field on Protein Permeation and Membrane Fouling. Membranes, 2021, 11, 105. | 3.0 | 14 | | 195 | Preparation and characterization of cellulose acetate membranes for osmosedimentation. Journal of Polymer Science, Polymer Letters Edition, 1983, 21, 49-55. | 0.4 | 13 | | 196 | On the cooccurrence of demixing and thermoreversible gelation of polymer solutions. 2. Thermodynamic background. Macromolecules, 1987, 20, 1948-1951. | 4.8 | 13 | | 197 | Morphology of block copolymers in a selective environment. Polymer, 1994, 35, 490-495. | 3.8 | 13 | | 198 | Stability of sulfonated polytriazole and polyoxadiazole membranes. Asia-Pacific Journal of Chemical Engineering, 2010, 5, 235-241. | 1.5 | 13 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 199 | Carbon Quantum Dot-Enabled Tuning of the Microphase Structures of Poly(ether- <i>b</i> -amide) Membrane for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2020, 59, 14960-14969. | 3.7 | 13 | | 200 | On the cooccurrence of demixing and thermoreversible gelation of polymer solutions. 3. Overall view. Macromolecules, 1987, 20, 1952-1957. | 4.8 | 12 | | 201 | Barrier Properties of Poly(benzimidazole)-Layered Silicates Nanocomposite Materials. Advanced Engineering Materials, 2006, 8, 1010-1015. | 3.5 | 12 | | 202 | Membranes prepared by self-assembly and chelation assisted phase inversion. Chemical Communications, 2017, 53, 6609-6612. | 4.1 | 12 | | 203 | "Linking microstructure of membranes and performance― Journal of Membrane Science, 2020, 594, 117419. | 8.2 | 12 | | 204 | Shear influence on the phase separation of oligomer blends. Macromolecular Chemistry and Physics, 1994, 195, 1257-1271. | 2.2 | 11 | | 205 | In situ growth of biocidal AgCl crystals in the top layer of asymmetric polytriazole membranes. RSC Advances, 2016, 6, 46696-46701. | 3.6 | 11 | | 206 | Activation of PVDF membranes through facile hydroxylation of the polymeric dope. Journal of Materials Research, 2017, 32, 4219-4231. | 2.6 | 11 | | 207 | Self-assembly of polystyrene- b -poly(2-vinylpyridine)- b -poly(ethylene oxide) triblock terpolymers.
European Polymer Journal, 2018, 100, 121-131. | 5.4 | 11 | | 208 | Functionalization of Poly(oxindole biphenylylene) membranes by photoinduced thiol-yne click chemistry. Journal of Membrane Science, 2020, 598, 117673. | 8.2 | 11 | | 209 | Percoll and Ficoll self-generated density gradients by low-speed osmocentrifugation. Analytical Biochemistry, 1985, 146, 48-51. | 2.4 | 10 | | 210 | Cellulose acetate membranes for osmosedimentation: Performance and morphological dependence on preparation conditions. Polymer, 1986, 27, 937-943. | 3.8 | 10 | | 211 | Polymer-polymer miscibility evaluation by acoustic emission. Die Makromolekulare Chemie Rapid Communications, 1992, 13, 45-53. | 1.1 | 10 | | 212 | Solution Properties of a Diblock Copolymer in a Selective Solvent of Marginal Quality. 2. Characterization of Micelles and Surface Tension. Macromolecules, 1994, 27, 4561-4565. | 4.8 | 10 | | 213 | Blends of poly(methyl methacrylate) and polyamides. Journal of Materials Science, 1998, 33, 3729-3735. | 3.7 | 10 | | 214 | Comparison of asymmetric and thin-film composite membranes having Matrimid 5218 selective layer. Desalination, 2006, 199, 193-194. | 8.2 | 10 | | 215 | Novel proton conductive membranes containing sulfonated silica. Desalination, 2006, 199, 274-276. | 8.2 | 10 | | 216 | Evolution of regular geometrical shapes in fiber lumens. Scientific Reports, 2017, 7, 9171. | 3.3 | 10 | | # | Article | IF | CITATIONS | |-----|--|-------------|-----------| | 217 | Relative Importance of Stochastic Assembly Process of Membrane Biofilm Increased as Biofilm Aged. Frontiers in Microbiology, 2021, 12, 708531. | 3. 5 | 10 | | 218 | Naturally Extracted Hydrophobic Solvent and Self-Assembly in Interfacial Polymerization. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44824-44832. | 8.0 | 10 | | 219 | One-Step, Room Temperature Synthesis of Well-Defined, Organo-Soluble Multifunctional Aromatic Polyimides. Macromolecules, 2021, 54, 10870-10882. | 4.8 | 10 | | 220 | Acid-free fabrication of polyaryletherketone membranes. Journal of Membrane Science, 2022, 660, 120798. | 8.2 | 10 | | 221 | Osmosedimentation: Approach to sedimentation equilibrium under gravity. Journal of Colloid and Interface Science, 1984, 98, 489-493. | 9.4 | 9 | | 222 | Uso do processo sol-gel na obtenção de materiais hÃbridos organo-inorgânicos: preparação, caracterização e aplicação em eletrólitos de estado sólido. Polimeros, 1997, 7, 27-36. | 0.7 | 9 | | 223 | Hybrids of poly(ethylene oxide-co-epichlorhydrin) and silica: phase separation, morphology and thermal properties. Polymer, 1998, 39, 6195-6203. | 3.8 | 9 | | 224 | Membranes for portable direct alcohol fuel cells. Desalination, 2006, 200, 653-655. | 8.2 | 9 | | 225 | Synthesis and characterization of polystyrene coated iron oxide nanoparticles and asymmetric assemblies by phase inversion. Journal of Applied Polymer Science, 2015, 132, . | 2.6 | 9 | | 226 | Self-Assembled Membranes with Featherlike and Lamellar Morphologies Containing \hat{l}_{\pm} -Helical Polypeptides. Macromolecules, 2018, 51, 8174-8187. | 4.8 | 9 | | 227 | High flux membranes, based on self-assembled and H-bond linked triblock copolymer nanospheres.
Journal of Membrane Science, 2019, 585, 10-18. | 8.2 | 9 | | 228 | Block Copolymer Membranes. , 2020, , 297-316. | | 9 | | 229 | An Assistive Magnetic Skin System: Enabling Technology for Quadriplegics. Advanced Engineering Materials, 2021, 23, . | 3.5 | 9 | | 230 | Solution Properties of a Diblock Copolymer in a Selective Solvent of Marginal Quality. 1. Phase Diagram and Rheological Behavior. Macromolecules, 1994, 27, 1045-1050. | 4.8 | 8 | | 231 | Phase diagrams of the system tetrahydrofuran \hat{I}^3 -butyrolactone/poly(ether imide) and determination of interaction parameters. Polymer, 1998, 39, 5133-5138. | 3.8 | 8 | | 232 | Organic-Inorganic Membranes. Membrane Science and Technology, 2008, 13, 121-134. | 0.5 | 8 | | 233 | Photoresponsive nanostructured membranes. RSC Advances, 2016, 6, 75594-75601. | 3.6 | 8 | | 234 | Post modification of acetylene functional poly(oxindole biphenylylene) by photoinduced CuAAC. European
Polymer Journal, 2018, 100, 298-307. | 5.4 | 8 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 235 | Zwitterionic Triamine Monomer for the Fabrication of Thin-Film Composite Membranes. Industrial & Engineering Chemistry Research, 2021, 60, 583-592. | 3.7 | 8 | | 236 | Osmosedimentation: A Study Using the Linear Approximation of Non-Equilibrium Thermodynamics. Journal of Non-Equilibrium Thermodynamics, 1987, 12, . | 4.2 | 7 | | 237 | Characterization of proton-conducting organic-inorganic polymeric materials by ASAXS. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2981-2992. | 2.1 | 7 | | 238 | Gas Separation with Membranes. , 2006, , 53-90. | | 7 | | 239 | Syndiotactic polypropylene copolymer membranes and their performance for oxygen separation. Journal of Membrane Science, 2010, 348, 34-40. | 8.2 | 7 | | 240 | Porous asymmetric SiO2-g-PMMA nanoparticles produced by phase inversion. Journal of Materials Science, 2014, 49, 7399-7407. | 3.7 | 7 | | 241 | Preâ€treatment Effect on the Sulfonated Poly(ether ether ketone) Membrane Transport Properties and Direct Methanol Fuel Cell Performance. Separation Science and Technology, 2007, 42, 2909-2925. | 2.5 | 6 | | 242 | Carboxyl-functionalized nanochannels based on block copolymer hierarchical structures. Faraday Discussions, 2018, 209, 303-314. | 3.2 | 6 | | 243 | Enhanced CO2 separation in membranes with anion-cation dual pathways. Journal of CO2 Utilization, 2020, 38, 355-365. | 6.8 | 6 | | 244 | Organic-inorganic membranes for gas separation. Annales De Chimie: Science Des Materiaux, 2007, 32, 119-126. | 0.4 | 6 | | 245 | Thermal treatment of hydroxyl functionalized polytriazole and its effect on gas transport: From crosslinking to carbon molecular sieve. Journal of Membrane Science, 2022, 642, 119963. | 8.2 | 6 | | 246 | Gas Separation with Membranes. , 0, , 39-67. | | 5 | | 247 | 3D morphology design for forward osmosis. Journal of Membrane Science, 2016, 516, 172-184. | 8.2 | 5 | | 248 | Highly porous polytriazole ion exchange membranes cast from solutions in non-toxic cosolvents. Polymer, 2017, 126, 446-454. | 3.8 | 5 | | 249 | Polyethersulfone/Graphene Oxide Ultrafiltration Membranes from Solutions in Ionic Liquid. MRS Advances, 2017, 2, 2505-2511. | 0.9 | 5 | | 250 | Thin Film Polyamide Membranes with Photoresponsive Antibacterial Activity. ChemistrySelect, 2017, 2, 6612-6616. | 1.5 | 5 | | 251 | Fabrication of Hollow Fiber Membranes Using Highly Viscous Liquids as Internal Coagulants.
Industrial & Description of Hollow Fiber Membranes Using Highly Viscous Liquids as Internal Coagulants. | 3.7 | 5 | | 252 | On the viscosity of moderately concentrated solutions of poly(ether imide) in a mixed solvent of marginal quality. Polymer, 2000, 41, 4743-4746. | 3.8 | 4 | | # | Article | IF | CITATIONS | |-----|--|-----------------|------------| | 253 | Pre-treatment effect on the transport properties of sulfonated poly(ether ether ketone) membranes for DMFC applications. Desalination, 2006, 200, 645-647. | 8.2 | 4 | | 254 | An Impedance Study on the sPEEK/ZrO ₂ Membranes for Direct Methanol Fuel Cell Applications. Materials Science Forum, 2008, 587-588, 926-930. | 0.3 | 4 | | 255 | Analysis of proton-conducting organic–inorganic hybrid materials based on sulphonated poly(ether) Tj ETQq1 355, 6-11. | 0.784314
3.1 | rgBT /Over | | 256 | Applications to water transport systems: general discussion. Faraday Discussions, 2018, 209, 389-414. | 3.2 | 4 | | 257 | Flexible isoporous air filters for high-efficiency particle capture. Polymer, 2021, 213, 123278. | 3.8 | 4 | | 258 | Production of sub-10 micrometre cellulose microbeads using isoporous membranes. , 2022, 2, 100024. | | 4 | | 259 | A New Centrifugal Ultrafiltration Device. Separation Science and Technology, 1986, 21, 823-830. | 2.5 | 3 | | 260 | Preferential wetting of oligomeric ethylene glycol/propylene glycol blends on solid surfaces. Acta Polymerica, 1994, 45, 110-114. | 0.9 | 3 | | 261 | Non-Fluorinated Membranes Thickness Effect on the DMFC Performance. Separation Science and Technology, 2008, 43, 1917-1932. | 2.5 | 3 | | 262 | Reactive phase inversion for manufacture of asymmetric poly (ether imide sulfone) membranes. Reactive and Functional Polymers, 2014, 85, 1-10. | 4.1 | 3 | | 263 | Consistent model reduction of polymer chains in solution in dissipative particle dynamics: Model description. Computer Physics Communications, 2015, 196, 255-266. | 7.5 | 3 | | 264 | Rheology of Polytriazole/ZIF-8 Solutions and Dynamics of Mixed-Matrix Composite Films. ACS Applied Polymer Materials, 2021, 3, 6045-6055. | 4.4 | 3 | | 265 | Blends of organosilicon polymers with polystyrene and poly(2,6-dimethyl-1,4-phenylene oxide). , 1997, 35, 2609-2616. | | 2 | | 266 | Aligned Nafion $\hat{A}^{@}$ Nanocomposites: Preparation and Morphological Characterization. Macromolecular Materials and Engineering, 2003, 288, 175-180. | 3.6 | 2 | | 267 | Membrane Preparation. , 2006, , 9-14. | | 2 | | 268 | Restrictions in Model Reduction for Polymer Chain Models in Dissipative Particle Dynamics. Procedia Computer Science, 2014, 29, 728-739. | 2.0 | 2 | | 269 | Cell-element simulations to optimize the performance of osmotic processes in porous membranes. Computers and Mathematics With Applications, 2018, 76, 361-376. | 2.7 | 2 | | 270 | Nanoporous membrane fabrication by nanoimprint lithography for nanoparticle sieving. Nanoscale Advances, 2022, 4, 1119-1124. | 4.6 | 2 | | # | Article | IF | CITATIONS | |-----|---|------------|----------------| | 271 | Investigating the thermal stability of metallic and non-metallic nanoparticles using a novel graphene oxide-based transmission electron microscopy heating-membrane. Nanotechnology, 2022, 33, 255701. | 2.6 | 2 | | 272 | Application of statistical mixture models for ternary polymer blends. Journal of the Brazilian Chemical Society, 1997, 8, 587-595. | 0.6 | 1 | | 273 | Application of Carbon Nanotube/Polymer Composites as Electrode for Polyelectrolyte Membrane Fuel Cells. Materials Research Society Symposia Proceedings, 2005, 885, 1. | 0.1 | 1 | | 274 | Presently Available Membranes for Liquid Separation. , 2006, , 15-38. | | 1 | | 275 | Polymermembranen. , 2006, , 1-21. | | 1 | | 276 | Polyetherketones for fuel cell application. Desalination, 2006, 199, 289-290. | 8.2 | 1 | | 277 | Miscibilidade de Blendas de Poliestireno com PolÃmeros de SilÃcio. Polimeros, 1998, 8, 77-81. | 0.7 | 1 | | 278 | Local Structure of Catalytically Active Metal Clusters in Polymer Membranes. European Physical Journal Special Topics, 1997, 7, C2-875-C2-877. | 0.2 | 1 | | 279 | A low-cost, small-scale polymer mixer. Journal of Chemical Education, 1990, 67, 982. | 2.3 | 0 | | 280 | Membranen fýr die Brennstoffzelle. , 2006, , 453-467. | | 0 | | 281 | Impact of Functionalization of Nanoparticles on the Barrier Properties of Ionomernanocomposite Membranes for DMFC. ECS Transactions, 2006, 3, 1297-1304. | 0.5 | 0 | | 282 | Nanochannels: Functionalized Nanochannels from Self-Assembled and Photomodified Poly(Styrene-b) Tj ETQq0 (| 0 orgBT /C |)verlock 10 Tf | | 283 | Fluorescence-assisted real-time study of magnetically immobilized enzyme stability in a crossflow membrane bioreactor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125687. | 4.7 | 0 | | 284 | Organic-Inorganic Membranes for Fuel Cell Application. , 2008, , 1-12. | | 0 | | 285 | Preparation and Characterization of Polymeric Membranes for Fuel Cells. , 2012, , 94-103. | | O | | 286 | Multilayered Thin Film Composite Membranes. , 2015, , 1-3. | | 0 |