Hirosato Takikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4152534/publications.pdf

Version: 2024-02-01

		759055	580701
59	798	12	25
papers	citations	h-index	g-index
50	50	F.0	5.45
59	59	59	545
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Conversion of methyl carlactonoate to heliolactone in sunflower. Natural Product Research, 2022, 36, 2215-2222.	1.0	9
2	Synthesis and biological evaluation of cajaninstilbene acid and amorfrutins A-D as cytotoxic agents against human pancreatic carcinoma PANC-1 cells. Bioscience, Biotechnology and Biochemistry, 2022, , .	0.6	0
3	Identification of 6- <i>epi</i> -heliolactone as a biosynthetic precursor of avenaol in <i>Avena strigosa</i> . Bioscience, Biotechnology and Biochemistry, 2022, , .	0.6	1
4	Identification and characterization of sorgomol synthase in sorghum strigolactone biosynthesis. Plant Physiology, 2021, 185, 902-913.	2.3	30
5	Unified synthesis and assessment of tumor cell migration inhibitory activity of optically active UTKO1, originally designed moverastin analog. Bioscience, Biotechnology and Biochemistry, 2021, 85, 160-167.	0.6	1
6	Stereoselective Synthesis of (2 S ,6 R)â€Diaminoâ€(5 R ,7)â€dihydroxyâ€heptanoic Acid (DADH): An Unusual Amino Acid from Streptomyces sp. SANK 60404. European Journal of Organic Chemistry, 2021, 2021, 1396-1401.	1.2	2
7	Concise enantioselective synthesis of wine lactone via intramolecular Diels–Alder reaction. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1390-1394.	0.6	0
8	Studies on strigolactone BC-ring formation: Chemical conversion of an 18-hydroxycarlactonoate derivative into racemic 4-deoxyorobanchol/5-deoxystrigol via the acid-mediated cascade cyclization. Tetrahedron Letters, 2021, 68, 152922.	0.7	8
9	JBIR-155, a Specific Class D β-Lactamase Inhibitor of Microbial Origin. Organic Letters, 2021, 23, 4415-4419.	2.4	3
10	Homophymamide A, Heterodetic Cyclic Tetrapeptide from a <i>Homophymia</i> sp. Marine Sponge: A Cautionary Note on Configurational Assignment of Peptides That Contain a Ureido Linkage. Journal of Natural Products, 2021, 84, 1848-1853.	1.5	9
11	Specific methylation of $(11R)$ -carlactonoic acid by an Arabidopsis SABATH methyltransferase. Planta, 2021, 254, 88.	1.6	18
12	Studies on Strigolactone Based on Synthetic Organic Chemistry. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 819-828.	0.0	0
13	Synthesis of racemic orobanchols via acid-mediated cascade cyclization: Insight into the process of BC-ring formation in strigolactone biosynthesis. Tetrahedron Letters, 2021, 85, 153469.	0.7	3
14	Memories of Professor Kenji Mori, the Giant of Pheromone Synthesis. Journal of Chemical Ecology, 2021, , 1.	0.9	2
15	Enantioselective synthesis of 6-methyloctanal and 8-methyldecanal, the characteristic aroma components in yuzu Citrus junos, and analysis of their enantiomeric compositions in yuzu essential oil. Bioscience, Biotechnology and Biochemistry, 2021, , .	0.6	1
16	Structural and configurational diversity of strigolactones. Japanese Journal of Pesticide Science, 2021, 46, 136-142.	0.0	0
17	Asymmetric synthesis of <i>trans-p</i> -menth-3-ene-1,2,8-triol, the monoterpene isolated from herbal plants. Bioscience, Biotechnology and Biochemistry, 2020, 84, 37-42.	0.6	3
18	Metachromins X and Y from a marine sponge Spongia sp. and their effects on cell cycle progression. Bioorganic and Medicinal Chemistry, 2020, 28, 115233.	1.4	8

#	Article	IF	CITATIONS
19	Pheromone synthesis. Part 265: Synthesis and stereochemical composition of two pheromonal compounds of the female Korean apricot wasp, Eurytoma maslovskii. Tetrahedron, 2020, 76, 131410.	1.0	7
20	Studies toward the enantioselective synthesis of neurymenolide A: Construction of the macrocyclic core via Claisen rearrangement. Tetrahedron Letters, 2020, 61, 151825.	0.7	2
21	Concise synthesis of heliolactone, a non-canonical strigolactone isolated from sunflower. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1113-1118.	0.6	9
22	CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Planta, 2020, 251, 97.	1.6	69
23	Total synthesis of both enantiomers of clavigerins B and C. Tetrahedron, 2020, 76, 131297.	1.0	2
24	First synthesis and absolute configuration of phorbasin H, a diterpene carboxylic acid isolated from the sponge <i>Phorbas gukulensis</i> Bioscience, Biotechnology and Biochemistry, 2019, 83, 2198-2201.	0.6	6
25	First enantioselective synthesis of salinipostin A, a marine cyclic enol-phosphotriester isolated from Salinispora sp. Tetrahedron Letters, 2019, 60, 150917.	0.7	7
26	First synthesis of both enantiomers of pseudohygrophorone A12, an anti-fungal cyclohexenone derivative isolated from Hygrophorus abieticola. Tetrahedron, 2019, 75, 130528.	1.0	1
27	Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Science Advances, 2019, 5, eaax9067.	4.7	122
28	First enantioselective synthesis of exiguamide, a nitrogen-containing spirocyclic sesquiterpene isolated from the marine sponge Geodia exigua. Tetrahedron, 2019, 75, 652-657.	1.0	4
29	Concise synthesis of (\hat{A}_{\pm}) -litseaones A and B. Bioscience, Biotechnology and Biochemistry, 2019, 83, 810-812.	0.6	1
30	Synthesis-guided structure revision of the monoterpene alcohol isolated from Mentha haplocalyx. Bioscience, Biotechnology and Biochemistry, 2019, 83, 391-399.	0.6	3
31	First synthesis of (<i>S</i>)-(+)-hymenoic acid, a DNA polymerase λ inhibitor isolated from <i>Hymenochaetaceae</i>) sp. Bioscience, Biotechnology and Biochemistry, 2018, 82, 42-45.	0.6	5
32	Evidence for species-dependent biosynthetic pathways for converting carlactone to strigolactones in plants. Journal of Experimental Botany, 2018, 69, 2305-2318.	2.4	43
33	Synthesis of both enantiomers of conosilane A. Tetrahedron Letters, 2018, 59, 4397-4400.	0.7	4
34	First synthesis of (±)-myristicyclin A. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1867-1870.	0.6	2
35	A novel synthesis of (â^')-callicarpenal. Tetrahedron, 2018, 74, 5745-5751.	1.0	4
36	First synthesis of (±)-pseudohygrophorone A12, an anti-fungal cyclohexenone derivative isolated from Hygrophorus abieticola. Tetrahedron Letters, 2018, 59, 3503-3505.	0.7	5

3

#	Article	IF	CITATIONS
37	Bioconversion of 5-deoxystrigol stereoisomers to monohydroxylated strigolactones by plants. Journal of Pesticide Sciences, 2018, 43, 198-206.	0.8	21
38	A concise synthesis of optically active solanacol, the germination stimulant for seeds of root parasitic weeds. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1240-1245.	0.6	10
39	Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry, 2014, 108, 122-128.	1.4	122
40	The bioconversion of 5-deoxystrigol to sorgomol by the sorghum, Sorghum bicolor (L.) Moench. Phytochemistry, 2013, 93, 41-48.	1.4	30
41	Synthesis of 7-Oxo-5-deoxystrigol, a 7-Oxygenated Strigolactone Analog. Bioscience, Biotechnology and Biochemistry, 2013, 77, 832-835.	0.6	7
42	<i>Ent</i> -2′- <i>epi</i> -Orobanchol and Its Acetate, As Germination Stimulants for <i>Striga gesnerioides</i> Seeds Isolated from Cowpea and Red Clover. Journal of Agricultural and Food Chemistry, 2011, 59, 10485-10490.	2.4	82
43	Triterpenoid total synthesis. Part 6. Synthesis of testudinariols A and B, triterpene metabolites of the marine mollusc Pleurobrancus testudinarius Journal of the Chemical Society, Perkin Transactions 1, 2001, , 1007-1017.	1.3	7
44	Synthesis and absolute configuration of stellettadine A, a bisguanidinium alkaloid isolated from a marine sponge Stelletta sp Journal of the Chemical Society, Perkin Transactions 1, 2001, , 657-661.	1.3	12
45	Does pheromone biology of Lambdina athasaria and L. pellucidaria contribute to their reproductive isolation?. Journal of Chemical Ecology, 2001, 27, 431-442.	0.9	14
46	Triterpenoid total synthesis. Part 5. Synthetic disproof of the triterpene structure proposed for naurol A, a cytotoxic metabolite of a Pacific sponge. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 2043-2046.	1.3	14
47	Synthesis of the Enantiomers of (Z)-21-Methyl-8-pentatriacontene, the Major Component of the Female-Produced Contact Sex Pheromone of the Yellow-Spotted Longicorn Beetle,Psacothea hilaris. European Journal of Organic Chemistry, 1999, 1999, 981-984.	1.2	6
48	Synthesis and Absolute Configuration of Rotundial, a Mosquito Repellent from the Leaves of Vitex rotundiforia. European Journal of Organic Chemistry, 1998, 1998, 229-232.	1.2	14
49	Synthesis of (6S,7S)-7-Hydroxy-6,11-cyclofarnes-3(15)-en-2-one, the Opposite Enantiomer of the Antibacterial Sesquiterpene fromPremnaoligotricha, and the (R) Enantiomer of Ancistrodial, the Defensive Sesquiterpene fromAncistrotermes cavithorax. European Journal of Organic Chemistry, 1998, 1998, 2851-2854.	1.2	3
50	Title is missing!. European Journal of Organic Chemistry, 1998, 1998, 2851-2854.	1.2	1
51	Pheromone Synthesis, CLXXV.– Synthesis of Koiganal I and II, the Sex Pheromone Components of the Webbing Clothes Moth. Liebigs Annalen, 1997, 1997, 139-140.	0.8	5
52	Pheromone Synthesis, CLXXVIII. – Synthesis of (â^')-exo-Isobrevicomin and Its (â^')-endo Isomer, the Components of The Male-Produced Volatiles of the Mountain Pine Beetle, Dendroctonus ponderosae. Liebigs Annalen, 1997, 1997, 327-332.	0.8	12
53	Pheromone Synthesis, CLXXX. Synthesis of (3 <i>S</i> ,11 <i>S</i>)â€3,11â€Dimethylâ€2â€heptacosannone, a Ne Component of the Female Sex Pheromone of the German Cockroach. Liebigs Annalen, 1997, 1997, 815-820.	°0.8	4
54	Pheromone Synthesis, CLXXXIII. Synthesis of (1 <i>R</i> ,2 <i>R</i> ,5 <i>S</i> ,7 <i>R</i> ,1 <i>R</i> ,1 <i>R</i> ,2 <i>R</i> ,1,2 <i>R</i> ,2 <i>R</i> ,	0.8	9

#	Article	IF	CITATIONS
55	Pheromone Synthesis, CLXXXVI. Synthesis of (1 <i>S</i> ,2 <i>R</i> ,5 <i>R</i>)â€Bicolorin, the Aggregation Pheromone of Male Beech Bark Beetles (<i>Taphrorychus bicolor</i>), and Its (1 <i>R</i> ,2 <i>R</i> ,5 <i>S</i>) Isomer. Liebigs Annalen, 1997, 1997, 2495-2498.	0.8	3
56	Pheromone Synthesis, CLXXVII. Synthesis of the Enantiomers of 2-Methyl-4-heptanol and 2-Methyl-4-octanol, the Pheromone Components of the West Indian Sugarcane Borer. Liebigs Annalen, 1996, 1963-1964.	0.8	6
57	Pheromone Synthesis, CLXXVI. Synthesis of the Four Stereoisomers of 3,13â€Dimethylheptadecane, the Major Sex Pheromone Component of the Western False Hemlock Looper. Liebigs Annalen, 1996, 1996, 1965-1970.	0.8	8
58	Synthesis of Mono―and Sesquiterpenoids, XXV. Synthesis of (6 <i>R</i> *,7 <i>R</i> *)â€7â€Hydroxyâ€6,11 yclofarnesâ€3(15)â€enâ€2â€one, the Racemate of the Antibacte Sesquiterpene from <i>Premna oligotricha</i> , and Its (6 <i>R</i> *,7 <i>S</i> *) Isomer. Liebigs Annalen, 1996, 1996, 891-897.	erial 0.8	4
59	Synthesis of Sphingosine Relatives, XVIII!. Synthesis of Penazetidine A, an Alkaloid Inhibitor of Protein Kinase C Isolated from the Marine Sponge <i>Penares sollasi</i> Liebigs Annalen, 1996, 1996, 1083-1089.	0.8	10