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Nanocluster Size-Control and â€œMagic Numberâ€• Investigations. Experimental Tests of the â€œLiving-Metal
Polymerâ€• Concept and of Mechanism-Based Size-Control Predictions Leading to the Syntheses of
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3.2 111
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Trisubstituted heteropolytungstates as soluble metal oxide analogues. 4. The synthesis and
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1.1 110
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Visible-Light-Assisted Photoelectrochemical Water Oxidation by Thin Films of a
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36
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Nanoclusters:â€‰ Synthesis, Characterization, and Hydrogenation Catalysis. Chemistry of Materials, 1999,
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Iridium(0) Nanocluster, Acid-Assisted Catalysis of Neat Acetone Hydrogenation at Room Temperature:Â 
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Transition-Metal Nanocluster Stabilization Fundamental Studies:â€‰ Hydrogen Phosphate as a Simple,
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Nucleation is Second Order: An Apparent Kinetically Effective Nucleus of Two for
Ir(0)<sub><i>n</i></sub> Nanoparticle Formation from
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Plus Hydrogen. Journal of the American Chemical Society, 2014, 136, 17601-17615.
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26, 12455-12464.
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57 Nanocluster Formation and Stabilization Fundamental Studies. 2. Proton Sponge as an Effective
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for a 2-Step, Nucleation and Autocatalytic Growth Mechanism of Pt(0)<sub>n</sub>Formation from
H<sub>2</sub>PtCl<sub>6</sub>on Al<sub>2</sub>O<sub>3</sub>or TiO<sub>2</sub>. Journal of the
American Chemical Society, 2009, 131, 6389-6396.

6.6 58

59

LaMer's 1950 model of particle formation: a review and critical analysis of its classical nucleation and
fluctuation theory basis, of competing models and mechanisms for phase-changes and particle
formation, and then of its application to silver halide, semiconductor, metal, and metal-oxide
nanoparticles. Materials Advances, 2021, 2, 186-235.
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60
Fitting and Interpreting Transition-Metal Nanocluster Formation and Other Sigmoidal-Appearing
Kinetic Data: A More Thorough Testing of Dispersive Kinetic vs Chemical-Mechanism-Based Equations
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3.2 56

61
Development Plus Kinetic and Mechanistic Studies of a Prototype Supported-Nanoparticle
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Reduction by H2to Ir(0)n/Î³-Al2O3. Journal of the American Chemical Society, 2010, 132, 9701-9714.
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62
Electrochemical Water Oxidation Catalysis Beginning with Co(II) Polyoxometalates: The Case of the
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Catalysis, 2017, 7, 7-16.

5.5 54

63

Quantitative 1,10-Phenanthroline Catalyst-Poisoning Kinetic Studies of Rh(0) Nanoparticle and
Rh<sub>4</sub> Cluster Benzene Hydrogenation Catalysts: Estimates of the Poison
<i>K</i><sub>association</sub> Binding Constants, of the Equivalents of Poison Bound and of the
Number of Catalytically Active Sites for Each Catalyst. ACS Catalysis, 2012, 2, 1967-1975.
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64

A Four-Step Mechanism for the Formation of Supported-Nanoparticle Heterogenous Catalysts in
Contact with Solution: The Conversion of Ir(1,5-COD)Cl/Î³-Al<sub>2</sub>O<sub>3</sub> to
Ir(0)<sub>âˆ¼170</sub>/Î³-Al<sub>2</sub>O<sub>3</sub>. Journal of the American Chemical Society, 2014,
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6.6 48

65
Mechanism-Enabled Population Balance Modeling of Particle Formation en Route to Particle Average
Size and Size Distribution Understanding and Control. Journal of the American Chemical Society, 2019,
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66
Oxygenation Catalysis by All-Inorganic, Oxidation-Resistant, Dawson-Type Polyoxoanion-Supported
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67
Mononuclear Zeolite-Supported Iridium: Kinetic, Spectroscopic, Electron Microscopic, and
Size-Selective Poisoning Evidence for an Atomically Dispersed True Catalyst at 22 Â°C. ACS Catalysis,
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5.5 47

68

Nanoparticle Nucleation Is Termolecular in Metal and Involves Hydrogen: Evidence for a Kinetically
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[(1,5-COD)IrIÂ·P2W15Nb3O62]8â€“ Plus Dihydrogen. Journal of the American Chemical Society, 2017, 139,
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69
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Letters, 1996, 36, 75-79.

1.4 43

70 Kinetic and Mechanistic Studies of Vanadium-Based, Extended Catalytic Lifetime Catechol Dioxygenases.
Journal of the American Chemical Society, 2005, 127, 13988-13996. 6.6 42

71
Gold Nanocluster Agglomeration Kinetic Studies: Evidence for Parallel Bimolecular Plus
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Chemistry of Materials, 2012, 24, 1718-1725.
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72
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A Test of the Transition-Metal Nanocluster Formation and Stabilization Ability of the Most Common
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2006, 22, 9357-9367.
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74
Platinum-Catalyzed Phenyl and Methyl Group Transfer from Tin to Iridium:Â  Evidence for an
Autocatalytic Reaction Pathway with an Unusual Preference for Methyl Transfer. Journal of the
American Chemical Society, 2008, 130, 1839-1841.
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75
Transition-Metal Nanocluster Catalysts:Â Scaled-upSynthesis, Characterization, Storage Conditions,
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Tetrabutylammonium-Stabilized Ir(0) Nanoclusters. Chemistry of Materials, 2003, 15, 899-909.
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76

Supported-Nanoparticle Heterogeneous Catalyst Formation in Contact with Solution: Kinetics and
Proposed Mechanism for the Conversion of Ir(1,5-COD)Cl/Î³-Al<sub>2</sub>O<sub>3</sub>to
Ir(0)<sub>âˆ¼900</sub>/Î³-Al<sub>2</sub>O<sub>3</sub>. Journal of the American Chemical Society, 2011,
133, 7744-7756.
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77

Palladium(0) Nanoparticle Formation, Stabilization, and Mechanistic Studies: Pd(acac)<sub>2</sub> as
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Stoichiometry, Kinetics, and Minimal, Four-Step Mechanism of the Palladium Nanoparticle Formation
and Subsequent Agglomeration Reactions. Langmuir, 2016, 32, 3699-3716.
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78
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Catalytic Conditions. Chemistry of Materials, 2008, 20, 2592-2601.
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79 Particle Size Distributions via Mechanism-Enabled Population Balance Modeling. Journal of Physical
Chemistry C, 2020, 124, 4852-4880. 1.5 30

80 Silver Nanoparticles Synthesized by Microwave Heating: A Kinetic and Mechanistic Re-Analysis and
Re-Interpretation. Journal of Physical Chemistry C, 2017, 121, 27643-27654. 1.5 29

81

Determination of the Dominant Catalyst Derived from the Classic
[RhCp*Cl<sub>2</sub>]<sub>2</sub> Precatalyst System: Is it Single-Metal Rh<sub>1</sub>Cp*-Based,
Subnanometer Rh<sub>4</sub> Cluster-Based, or Rh(0)<i><sub>n</sub></i> Nanoparticle-Based
Cyclohexene Hydrogenation Catalysis at Room Temperature and Mild Pressures?. ACS Catalysis, 2015, 5,
3876-3886.
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82

Unintuitive Inverse Dependence of the Apparent Turnover Frequency on Precatalyst Concentration: A
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[(1,5-COD)Ir(Î¼-O<sub>2</sub>C<sub>8</sub>H<sub>15</sub>)]<sub>2</sub> and AlEt<sub>3</sub>. ACS
Catalysis, 2015, 5, 3342-3353.

5.5 27

83 Autoxidation-Product-Initiated Dioxygenases:Â  Vanadium-Based, Record Catalytic Lifetime Catechol
Dioxygenase Catalysis. Inorganic Chemistry, 2005, 44, 8521-8530. 1.9 26

84
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Langmuir, 2017, 33, 6550-6562.

1.6 24

85 Gold Nanoparticle Formation Kinetics and Mechanism: A Critical Analysis of the â€œRedox
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86 Stereospecific Polymerization of Chiral Oxazolidinone-Functionalized Alkenes. Macromolecules, 2010,
43, 7504-7514. 2.2 22

87 The Second Isolable B12-Thiolate Complex, (Pentafluorophenylthiolato)cobalamin:Â  Synthesis and
Characterization. Inorganic Chemistry, 1998, 37, 5109-5116. 1.9 21
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Syntheses, 2007, , 167-185. 0.3 20

89

Cobalt Polyoxometalate
Co<sub>4</sub>V<sub>2</sub>W<sub>18</sub>O<sub>68</sub><sup>10â€“</sup>: A Critical
Investigation of Its Synthesis, Purity, and Observed <sup>51</sup>V Quadrupolar NMR. Inorganic
Chemistry, 2016, 55, 5343-5355.
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90

Nucleation Kinetics and Molecular Mechanism in Transition-Metal Nanoparticle Formation: The
Intriguing, Informative Case of a Bimetallic Precursor,
{[(1,5-COD)Ir<sup>I</sup>Â·HPO<sub>4</sub>]<sub>2</sub>}<sup>2â€“</sup>. Chemistry of Materials,
2019, 31, 2848-2862.
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2007, , 186-201.
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92

Copper ion vs copper metalâ€“organic framework catalyzed NO release from bioavailable
S-Nitrosoglutathione en route to biomedical applications: Direct 1H NMR monitoring in water
allowing identification of the distinct, true reaction stoichiometries and thiol dependencies. Journal
of Inorganic Biochemistry, 2019, 199, 110760.

1.5 18

93
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